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Model
Discriminative modelling in general: P (y = k|x; w)

Binary classification: y ∈ {0, 1}

Want to predict probability of being in a particular class:
P (y = 1|x; w)

We could just fit a linear model: f(x; w) = w⊤x

But this could give predictions outside [0, 1] for some test inputs
(invalid probabilities).

Let us use the sigmoid function to force the output to lie in the [0, 1]
range:

f(x; w) = σ(w⊤x) = 1
1 + e−w⊤x

We interpret
f(x; w) = P (y = 1|x; w)

implying
P (y = 0|x; w) = 1− f(x; w)
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Loss
Data: {(x(n), y(n))}N

n=1 with y ∈ {0, 1}

E.g. for the Iris dataset we could have

To fit w, we use maximum likelihood estimation:1

L(w) = P (y(1), y(2), . . . , y(N)|x(1), x(2), . . . , x(N); w)
= P (y(1)|x(1); w) P (y(2)|x(2); w) · · · P (y(N)|x(N); w)

=

Or, equivalently, we minimise the negative log likelihood:

J(w) = − log L(w) =

with

P (y|x; w) =
f(x; w) if y = 1

1− f(x; w) if y = 0

=

=
(
σ(w⊤x)

)y (
1− σ(w⊤x)

)1−y

1Non-examinable: Because we are doing discriminative modelling, the
likelihood is based on the joint of the outputs

{
y(1), y(2), . . . , y(N)} con-

ditioned on being given the inputs
{

x(1), x(2), . . . , x(N)}. You would ar-
rive at the same result if you used the joint over the input-output pairs{

(x(1), y(1)), (x(2), y(2)), . . . , (x(N), y(N))
}

and then assumed a uniform prior
p(x) over the inputs.
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This means we can write the loss as:
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Optimisation
We use maximum likelihood estimation, or equivalently we want to
minimise the negative log likelihood:

J(w) = − log
N∏

n=1
P (y(n)|x(n); w)

= −
N∑

n=1

[
y(n) log σ(w⊤x(n)) + (1− y(n)) log

(
1− σ(w⊤x(n))

)]

To minimise this loss, we need the gradients ∂J(w)
∂w . Using vector and

matrix derivatives, we can show that:

∂J(w)
∂w

= −
N∑

n=1

(
y(n) − f(x(n); w)

)
x(n)

To optimise the loss, you could try setting ∂J(w)
∂w = 0. But you will

see this does not give a closed-form solution (as in linear regression).

So instead we use gradient descent:

w← w− η
∂J(w)

∂w
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Binary logistic regression on Iris dataset
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Binary logistic regression summary

• Prediction function: f(x; w) = σ(w⊤x) = 1
1 + e−w⊤x

• Interpret function as: f(x; w) = P (y = 1|x; w)

• With labels y ∈ {0, 1}, minimise the negative log likelihood:

J(w) = − log
N∏

n=1
P (y(n)|x(n); w)

= −
N∑

n=1

[
y(n) log f(x(n); w) + (1− y(n)) log

(
1− f(x(n); w)

)]

• Gradient: ∂J(w)
∂w

= −
N∑

n=1

(
y(n) − f(x(n); w)

)
x(n)

w
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Decision boundary
The decision boundary is the values of x for
which f(x; w) = σ(w⊤x) = 0.5, i.e. w⊤x = 0.

Here it might be easier to explicitly include the
bias term, i.e. f(x; w) = σ(w0 + w⊤x) = 0.5.

Let’s first consider the 2-D case.
Do the following:

1. Sketch the line w0 + w1x1 + w2x2 = 0
in the x1-x2 plane.

2. Sketch the vector w =
[
w1 w2

]⊤
in the

same plane.
3. Redraw the line in (1), but pretend w0 = 0.
4. Prove that the line in (3) is orthogonal to

the line in (2).

This proves that w is ⊥ to the decision boundary.
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Decision boundary
We can extend the above to higher dimensions. If we first ignore the
bias term, the decision boundary is given by:

w1x1 + w2x2 + . . . + wDxD = 0
w⊤x = 0

If we think of w as a vector in x-space, then the x vectors on the
decision boundary is orthogonal to w, since their dot product is zero:
w · x = 0.

We can add the bias back in:

w0 + w⊤x = 0

This has the effect of offsetting the decision boundary in x-space.
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Interpreting gradient descent
The weights w is a vector orthogonal to the decision boundary.

Let’s pretend we have a single training example with a positive label
y(n) = 1.

How does this single example affect the decision boundary in the
gradient descent update step?

We also pretend we don’t have a bias term w0.

∂J(w)
∂w

= −
N∑

n=1

(
y(n) − f(x(n); w)

)
x(n)

w(new) = w(old) − η
∂J(w)

∂w

∣∣∣∣∣
w(old)
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Binary logistic regression on Iris dataset
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Binary logistic regression on Iris dataset
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Visualising probabilities
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Probability surface
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Probability surface with large ||w||
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Probability surface with large ||w||
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Weight vector summary
The bias term w0 offsets the decision boundary.

The direction of w influences the direction of the decision boundary:
w is orthogonal to the decision boundary.

The length of w, i.e. ||w||, influences the “steepness” of the decision
boundary.

For very large ||w||, even points that are very close to the decision
boundary is assigned very high or very low probabilities P (y = 1|x; w).

With a small ||w||, the probability assignment is more gradual.
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Logistic regression with basis functions and
regularisation

Basis functions

Anywhere we wrote an x in the previous videos, the feature vector x
can be replaced with basis functions ϕ(x).

Regularisation

As in linear regression, we can perform regularised logistic regression
by penalising the weights:
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Logistic regression for non-separable
classes
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Logistic regression for non-separable
classes
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Logistic regression with basis functions
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Logistic regression with basis functions

1 2 3 4 5 6 7
Petal length (cm)

0.0

0.5

1.0

1.5

2.0

2.5

Pe
ta

l w
id

th
 (c

m
)

Iris versicolor

ϕ(x) =
[
1 x1 x2 x2

1 x2
2

]⊤

22



Videos covered in this note
• Logistic regression 1: Model and loss (14 min)
• Logistic regression 2: Optimisation (7 min)
• Logistic regression 3: The decision boundary and weight vector

(21 min)
• Logistic regression 4: Basis functions and regularisation (6 min)

Reading
• ISLR 4.3 intro
• ISLR 4.3.1
• ISLR 4.3.2
• ISLR 4.3.3
• ISLR 4.3.4
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https://youtu.be/nS6YewQAK7I&list=PLmZlBIcArwhOr0ysO1Hg4Wfoww0dZnHz4
https://youtu.be/SLhx32b7I3A&list=PLmZlBIcArwhOr0ysO1Hg4Wfoww0dZnHz4
https://youtu.be/fPT8VeuFRkU&list=PLmZlBIcArwhOr0ysO1Hg4Wfoww0dZnHz4
https://youtu.be/D_rIX0xaYno&list=PLmZlBIcArwhOr0ysO1Hg4Wfoww0dZnHz4
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