Binary logistic regression

Herman Kamper

2024-01, CC BY-SA 4.0

Model

Discriminative modelling in general: $P(y=k \mid \mathbf{x} ; \mathbf{w})$
Binary classification: $y \in\{0,1\}$
Want to predict probability of being in a particular class:
$P(y=1 \mid \mathbf{x} ; \mathbf{w})$
We could just fit a linear model: $f(\mathbf{x} ; \mathbf{w})=\mathbf{w}^{\top} \mathbf{x}$
But this could give predictions outside $[0,1]$ for some test inputs (invalid probabilities).

Let us use the sigmoid function to force the output to lie in the $[0,1]$ range:

$$
f(\mathbf{x} ; \mathbf{w})=\sigma\left(\mathbf{w}^{\top} \mathbf{x}\right)=\frac{1}{1+e^{-\mathbf{w}^{\top} \mathbf{x}}}
$$

We interpret

$$
f(\mathbf{x} ; \mathbf{w})=P(y=1 \mid \mathbf{x} ; \mathbf{w})
$$

implying

$$
P(y=0 \mid \mathbf{x} ; \mathbf{w})=1-f(\mathbf{x} ; \mathbf{w})
$$

Loss

Data: $\left\{\left(\mathbf{x}^{(n)}, y^{(n)}\right)\right\}_{n=1}^{N}$ with $y \in\{0,1\}$
E.g. for the Iris dataset we could have

$$
\left(\left[\begin{array}{c}
3.5 \\
1
\end{array}\right], 0\right),\left(\left[\begin{array}{l}
6.5 \\
2.25
\end{array}\right], 1\right), \cdots,\left(\left[\begin{array}{c}
5.0 \\
1.5
\end{array}\right], 0\right)
$$

To fit \mathbf{w}, we use maximum likelihood estimation: ${ }^{1}$

$$
\begin{aligned}
L(\mathbf{w}) & =P\left(y^{(1)}, y^{(2)}, \ldots, y^{(N)} \mid \mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \ldots, \mathbf{x}^{(N)} ; \mathbf{w}\right) \\
& =P\left(y^{(1)} \mid \mathbf{x}^{(1)} ; \mathbf{w}\right) P\left(y^{(2)} \mid \mathbf{x}^{(2)} ; \mathbf{w}\right) \cdots P\left(y^{(N)} \mid \mathbf{x}^{(N)} ; \mathbf{w}\right) \\
& =
\end{aligned}
$$

Or, equivalently, we minimise the negative log likelihood:

$$
J(\mathbf{w})=-\log L(\mathbf{w})=
$$

with

$$
\begin{aligned}
P(y \mid \mathbf{x} ; \mathbf{w}) & = \begin{cases}f(\mathbf{x} ; \mathbf{w}) & \text { if } y=1 \\
1-f(\mathbf{x} ; \mathbf{w}) & \text { if } y=0\end{cases} \\
& = \\
& =\left(\sigma\left(\mathbf{w}^{\top} \mathbf{x}\right)\right)^{y}\left(1-\sigma\left(\mathbf{w}^{\top} \mathbf{x}\right)\right)^{1-y}
\end{aligned}
$$

[^0]This means we can write the loss as:

Optimisation

We use maximum likelihood estimation, or equivalently we want to minimise the negative log likelihood:

$$
\begin{aligned}
J(\mathbf{w}) & =-\log \prod_{n=1}^{N} P\left(y^{(n)} \mid \mathbf{x}^{(n)} ; \mathbf{w}\right) \\
& =-\sum_{n=1}^{N}\left[y^{(n)} \log \sigma\left(\mathbf{w}^{\top} \mathbf{x}^{(n)}\right)+\left(1-y^{(n)}\right) \log \left(1-\sigma\left(\mathbf{w}^{\top} \mathbf{x}^{(n)}\right)\right)\right]
\end{aligned}
$$

To minimise this loss, we need the gradients $\frac{\partial J(\mathbf{w})}{\partial \mathbf{w}}$. Using vector and matrix derivatives, we can show that:

$$
\frac{\partial J(\mathbf{w})}{\partial \mathbf{w}}=-\sum_{n=1}^{N}\left(y^{(n)}-f\left(\mathbf{x}^{(n)} ; \mathbf{w}\right)\right) \mathbf{x}^{(n)}
$$

To optimise the loss, you could try setting $\frac{\partial J(\mathbf{w})}{\partial \mathbf{w}}=0$. But you will see this does not give a closed-form solution (as in linear regression).

So instead we use gradient descent:

$$
\mathbf{w} \leftarrow \mathbf{w}-\eta \frac{\partial J(\mathbf{w})}{\partial \mathbf{w}}
$$

Binary logistic regression on Iris dataset

Binary logistic regression summary

- Prediction function: $f(\mathbf{x} ; \mathbf{w})=\sigma\left(\mathbf{w}^{\top} \mathbf{x}\right)=\frac{1}{1+e^{-\mathbf{w}^{\top} \mathbf{x}}}$
- Interpret function as: $f(\mathbf{x} ; \mathbf{w})=P(y=1 \mid \mathbf{x} ; \mathbf{w})$
- With labels $y \in\{0,1\}$, minimise the negative log likelihood:

$$
\begin{aligned}
J(\mathbf{w}) & =-\log \prod_{n=1}^{N} P\left(y^{(n)} \mid \mathbf{x}^{(n)} ; \mathbf{w}\right) \\
& =-\sum_{n=1}^{N}\left[y^{(n)} \log f\left(\mathbf{x}^{(n)} ; \mathbf{w}\right)+\left(1-y^{(n)}\right) \log \left(1-f\left(\mathbf{x}^{(n)} ; \mathbf{w}\right)\right)\right]
\end{aligned}
$$

- Gradient: $\frac{\partial J(\mathbf{w})}{\partial \mathbf{w}}=-\sum_{n=1}^{N}\left(y^{(n)}-f\left(\mathbf{x}^{(n)} ; \mathbf{w}\right)\right) \mathbf{x}^{(n)}$

Decision boundary

The decision boundary is the values of x for which $f(\mathbf{x} ; \mathbf{w})=\sigma\left(\mathbf{w}^{\top} \mathbf{x}\right)=0.5$, i.e. $\mathbf{w}^{\top} \mathbf{x}=0$.

Here it might be easier to explicitly include the bias term, i.e. $f(\mathbf{x} ; \mathbf{w})=\sigma\left(w_{0}+\mathbf{w}^{\top} \mathbf{x}\right)=0.5$.

Let's first consider the 2-D case.
Do the following:

1. Sketch the line $w_{0}+w_{1} x_{1}+w_{2} x_{2}=0$ in the $x_{1}-x_{2}$ plane.
2. Sketch the vector $\mathbf{w}=\left[\begin{array}{ll}w_{1} & w_{2}\end{array}\right]^{\top}$ in the same plane.
3. Redraw the line in (1), but pretend $w_{0}=0$.
4. Prove that the line in (3) is orthogonal to the line in (2).

This proves that w is \perp to the decision boundary.

Decision boundary

We can extend the above to higher dimensions. If we first ignore the bias term, the decision boundary is given by:

$$
\begin{aligned}
w_{1} x_{1}+w_{2} x_{2}+\ldots+w_{D} x_{D} & =0 \\
\mathbf{w}^{\top} \mathbf{x} & =0
\end{aligned}
$$

If we think of \mathbf{w} as a vector in \mathbf{x}-space, then the \mathbf{x} vectors on the decision boundary is orthogonal to \mathbf{w}, since their dot product is zero: $\mathbf{w} \cdot \mathbf{x}=0$.

We can add the bias back in:

$$
w_{0}+\mathbf{w}^{\top} \mathbf{x}=0
$$

This has the effect of offsetting the decision boundary in x -space.

Interpreting gradient descent

The weights \mathbf{w} is a vector orthogonal to the decision boundary.
Let's pretend we have a single training example with a positive label $y^{(n)}=1$.

How does this single example affect the decision boundary in the gradient descent update step?

We also pretend we don't have a bias term w_{0}.

$$
\begin{gathered}
\frac{\partial J(\mathbf{w})}{\partial \mathbf{w}}=-\sum_{n=1}^{N}\left(y^{(n)}-f\left(\mathbf{x}^{(n)} ; \mathbf{w}\right)\right) \mathbf{x}^{(n)} \\
\mathbf{w}^{(\text {new })}=\mathbf{w}^{(\text {old })}-\left.\eta \frac{\partial J(\mathbf{w})}{\partial \mathbf{w}}\right|_{\mathbf{w}^{(\text {old })}}
\end{gathered}
$$

Binary logistic regression on Iris dataset

Binary logistic regression on Iris dataset

(See demo.)

Visualising probabilities

Probability surface

Probability surface with large \|w\|

Probability surface with large $\|$ w $\|$

Weight vector summary

The bias term w_{0} offsets the decision boundary.
The direction of \mathbf{w} influences the direction of the decision boundary: w is orthogonal to the decision boundary.

The length of w , i.e. $\|\mathrm{w}\|$, influences the "steepness" of the decision boundary.

For very large $\|\mathbf{w}\|$, even points that are very close to the decision boundary is assigned very high or very low probabilities $P(y=1 \mid \mathbf{x} ; \mathbf{w})$.

With a small $\|\mathbf{w}\|$, the probability assignment is more gradual.

Logistic regression with basis functions and regularisation

Basis functions

Anywhere we wrote an \mathbf{x} in the previous videos, the feature vector \mathbf{x} can be replaced with basis functions $\phi(\mathbf{x})$.

Regularisation

As in linear regression, we can perform regularised logistic regression by penalising the weights:

Logistic regression for non-separable classes

Logistic regression for non-separable classes

Logistic regression with basis functions

Logistic regression with basis functions

Videos covered in this note

- Logistic regression 1: Model and loss (14 min)
- Logistic regression 2: Optimisation (7 min)
- Logistic regression 3: The decision boundary and weight vector (21 min)
- Logistic regression 4: Basis functions and regularisation (6 min)

Reading

- ISLR 4.3 intro
- ISLR 4.3.1
- ISLR 4.3.2
- ISLR 4.3.3
- ISLR 4.3.4

[^0]: ${ }^{1}$ Non-examinable: Because we are doing discriminative modelling, the likelihood is based on the joint of the outputs $\left\{y^{(1)}, y^{(2)}, \ldots, y^{(N)}\right\}$ conditioned on being given the inputs $\left\{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \ldots, \mathbf{x}^{(N)}\right\}$. You would arrive at the same result if you used the joint over the input-output pairs $\left\{\left(\mathbf{x}^{(1)}, y^{(1)}\right),\left(\mathbf{x}^{(2)}, y^{(2)}\right), \ldots,\left(\mathbf{x}^{(N)}, y^{(N)}\right)\right\}$ and then assumed a uniform prior $p(\mathbf{x})$ over the inputs.

