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Classification
From regression to classification:

• Regression: Predict scalar output y ∈ R given input x.

• Classification: Predict categorical class label y given input x.

Classification examples:

• Disease diagnoses: Classifying whether a patient is healthy or
not.

• Text classification: Classifying documents according to topic.

• Fault diagnoses: Is a photovoltaic system/antenna operating as
expected or not?
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Representing the target output
Classification: Predict categorical class label y given input x.

Data: In {(x(n), y(n))}N
n=1, the label y(n) should tell us which class

x(n) belongs to.

There is a number of ways to encode y numerically.

• Binary classification: y ∈ {0, 1} or y ∈ {−1, 1}

• Classification among K classes: y ∈ {1, 2, . . . , K}

3



Iris flower dataset
Our running example:1
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1Figure from Wikipedia.
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https://en.wikipedia.org/wiki/Iris_flower_data_set


K-nearest neighbours (K-NN)
The entire algorithm in one figure:2

2Figure from Wikipedia.
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https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm


K-NN details
The entire algorithm in two bullets

• For a new test input x, identify the K points in the training
data closest to x.

• Predict the class of x as the label that occurs most often in the
set XK of closest points.

Soft predictions

Can also get “soft” predictions, where the probability of x belonging
to class k is given by:

P (y = k|x) = 1
K

∑
n∈XK

I(y(n) = k)

with I the indicator function and XK the set of indices of the nearest
neighbours.

Choice of distance function

Euclidean distance:
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Cosine distance: θ is the angle between x(a) and x(b).
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K-NN in practice
Problems with K-NN

• Computational complexity: To classify one point, we need to
run through entire dataset (issues when N ≫).

• Distance functions can be inaccurate (need to make some as-
sumptions).

• Curse of dimensionality (issues when D ≫): Everything seems
far away.

Terminology

• K-NN is a non-parametric classification approach.

• It is an example of memory-based or instance-based learning.
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K-NN on Iris dataset
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K-NN on Iris dataset
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K-NN on Iris dataset
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K-NN for voice conversion
Example from the LSL group at Stellenbosch University.

11



Bayes classifier
If we wanted to follow a probabilistic approach, we could use the
following prediction model:

f(x; θ) = arg max
k

P (y = k|x)

To use this model, we need to know P (y = k|x). We can use Bayes’
rule:

P (y = k|x) = p(x|y = k)P (y = k)
p(x)

Since p(x) is the same for all k and we are only interested in the max,
we can throw away the denominator:

P (y = k|x) ∝ p(x|y = k)P (y = k)

This equation is very general. To actually use it, we need to decide
on forms for p(x|y = k) and P (y = k) and then figure out how we
will learn their parameters θ from training data {(x(n), y(n))}N

n=1.
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Intuitively: What do we need for the Bayes
classifier?

P (y = k|x) ∝ p(x|y = k)P (y = k)
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Quadratic and linear discriminant analysis
For P (y = k) = πk, a common approach is to simply count the
number of training points assigned to class k:

π̂k =
∑N

n=1 I(y(n) = k)
N

We could decide that for each class we use

p(x|y = k; θ) = N (x; µk, Σk)

and then set µk and Σk to the MLE for each class. This is called
quadratic discriminant analysis (QDA).

This could be problematic, though. If the dimensionality D is high
and we have few training points N , there might not be enough data
to estimate {(µk, Σk)}K

k=1. E.g. each Σk is a D × D matrix, so there
can be many parameters!

We could make the assumption that all classes share the same covari-
ance matrix Σ and then only fit {µk}K

k=1, giving us more data to fit
the single Σ. This is called linear discriminant analysis (LDA).

The naive Bayes assumption goes even further!
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Naive Bayes
In naive Bayes we assume that each feature is independent, i.e. that
each dimension of x is independent:

p(x|y = k; θ) =
D∏

d=1
p(xd|y = k; θ)

The naive Bayes assumption can be made for any distribution. For
the Gaussian case specifically, it leads to

p(x|y = k; θ) =
D∏

d=1
N (xd; µk,d, σ2

k,d)

where the set of parameters θ are all the means and variances.

This can easily be fit using the MLE for each of the D univariate
Gaussians for each of the K classes, i.e. we will have to fit D · K
univariate Gaussians.
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Iris dataset
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Gaussian Naive Bayes
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Gaussian Naive Bayes
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Quadratic discriminant analysis

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
Sepal length (cm)

2.0

2.5

3.0

3.5

4.0

4.5

Se
pa

l w
id

th
 (c

m
)

setosa
versicolour
virginica

19



Linear discriminant analysis
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Generative vs discriminative classification
Generative models

• Bayes classifier: P (y = k|x) ∝ p(x|y = k)P (y = k)

• Choose forms for p(x|y = k) and P (y = k) and learn the
parameters from data.

• Referred to as generative modelling since we can generate data:

– First sample class from P (y).
– Then sample data from p(x|y = sampled class).

• But often we aren’t actually interested in generating data: We
just want to classify!

• And it might be tricky to model p(x|y = k) for each class.

Discriminative models

• Just model P (y = k|x) directly!

• Use training data {(x(n), y(n))}N
n=1 to directly fit the probability

we are actually interested in.

• Logistic regression (next) is an example of discriminative mod-
elling.
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Videos covered in this note
• Classification 1: Task (9 min)
• Classification 2: K-nearest neighbours (15 min)
• Classification 3: Bayes classifier and naive Bayes (17 min)
• Classification 4: Generative vs discriminative (8 min)

Reading
• ISLR 2.2.3
• ISLR 4.1 intro
• ISLR 4.4 intro
• ISLR 4.4.4
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https://youtu.be/RqNaY7gnMP8&list=PLmZlBIcArwhMiJk7vCghuHGOGXXjC4n6b
https://youtu.be/73YHJwp71hk&list=PLmZlBIcArwhMiJk7vCghuHGOGXXjC4n6b
https://youtu.be/AaOTx_eLGZ0&list=PLmZlBIcArwhMiJk7vCghuHGOGXXjC4n6b
https://youtu.be/kizDqj9d2OM&list=PLmZlBIcArwhMiJk7vCghuHGOGXXjC4n6b
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