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Probabilistic approaches in machine
learning

In many machine learning problems it is useful to have a way to deal
with uncertainty.

Probability theory gives us a principled way to do this.

A probabilistic perspective is also often useful for defining and com-
bining loss functions.

But to be able to follow a probabilistic approach, we need a way to
estimate the parameters in a probabilistic model.

Maximum likelihood estimation is one of the most fundamental
methods to set the parameters in a probabilistic model.

In this note we look at estimating the parameters of a Gaussian
distribution. But we will see that this same approach can be used
in many other machine learning models, with the steps proceeding
exactly as we do here.
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The Gaussian distribution
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Maximum likelihood estimation for a
univariate Gaussian

Given samples x(1), x(2), . . . , x(N) from a univariate Gaussian with
unknown mean and variance, could we devise a way (maybe with a
“loss function”) to find optimal estimates of the mean µ̂ and variance
σ̂2?

How would these estimates compare with the sample mean and vari-
ance?

We assume the samples are independent and identically distributed
(IID), each a draw from the Gaussian N (x; µ, σ2). (Remember, we do
not know the mean or the variance, we only get to see the samples.)

Example
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MLE for a univariate Gaussian

We are given IID samples
{
x(n)

}N

n=1
, each a draw from N (x; µ, σ2).

The joint density of the samples:

Idea: We choose the (µ, σ2) that maximises the above, i.e.

This is called the likelihood of the parameters. The overall approach
is therefore called maximum likelihood estimation.
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Estimating the parameters
Instead of maximising the likelihood directly, it is often easier to
maximise the log likelihood:

This is because the log of the product becomes the sum of logs, and
we will see in a second why this is useful.

I also like minimising loss functions (instead of maximising things), so
let us minimise the negative log likelihood :

Strategy: Set ∂J
∂µ

= 0 and ∂J
∂σ2 = 0 and solve jointly to find µ̂ and σ̂2.

First we write out the negative log likelihood a bit more:

J(µ, σ2) = −
N∑

n=1
log

[
1√

2πσ2
exp

{
−(x(n) − µ)2

2σ2

}]

=

=
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Then take the partial derivatives with respect to µ:

Then take the partial derivatives with respect to σ2:

And set the partial derivatives equal to zero:

∂J

∂µ
= 0 :

∂J

∂σ2 = 0 :
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More about the likelihood

p
(
x(1), x(2), . . . , x(N)

)
= N

(
x(1); µ, σ2

)
· N

(
x(2); µ, σ2

)
· · · N

(
x(N); µ, σ2

)
=

N∏
n=1

N
(
x(n); µ, σ2

)

Negative log likelihood (NLL):

J(µ, σ2) = − log
N∏

n=1
N

(
x(n); µ, σ2

)
= −

N∑
n=1

log N
(
x(n); µ, σ2

)

x
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MLE for a multivariate Gaussian

Given samples
{
x(n)

}N

n=1
from a multivariate Gaussian:

p(x) = N (x; µ, Σ) = 1
(2π)D/2|Σ|1/2 exp

{
−1

2(x − µ)⊤Σ−1(x − µ)
}

then it can be shown in a similar way that the MLEs are:

µ̂ = 1
N

N∑
n=1

x(n)

Σ̂ = 1
N

N∑
n=1

(x(n) − µ̂)(x(n) − µ̂)⊤
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Videos covered in this note
• Gaussians 1: Maximum likelihood estimation (20 min)
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https://youtu.be/i6Rp0eiINgM&list=PLmZlBIcArwhPnCzcSUU5mF90aU_dMSnZ2
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