Maximum likelihood estimation

Herman Kamper

2024-01, CC BY-SA 4.0

Probabilistic approaches in machine learning

In many machine learning problems it is useful to have a way to deal with uncertainty.

Probability theory gives us a principled way to do this.

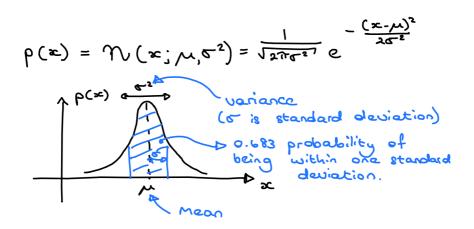
A probabilistic perspective is also often useful for defining and combining loss functions.

But to be able to follow a probabilistic approach, we need a way to estimate the parameters in a probabilistic model.

Maximum likelihood estimation is one of the most fundamental methods to set the parameters in a probabilistic model.

In this note we look at estimating the parameters of a Gaussian distribution. But we will see that this same approach can be used in many other machine learning models, with the steps proceeding exactly as we do here.

The Gaussian distribution



Maximum likelihood estimation for a univariate Gaussian

Given samples $x^{(1)}, x^{(2)}, \ldots, x^{(N)}$ from a univariate Gaussian with unknown mean and variance, could we devise a way (maybe with a "loss function") to find optimal estimates of the mean $\hat{\mu}$ and variance $\hat{\sigma}^2$?

How would these estimates compare with the sample mean and variance?

We assume the samples are *independent and identically distributed* (IID), each a draw from the Gaussian $\mathcal{N}(x; \mu, \sigma^2)$. (Remember, we do not know the mean or the variance, we only get to see the samples.)

Example

MLE for a univariate Gaussian

We are given IID samples $\left\{x^{(n)}\right\}_{n=1}^N$, each a draw from $\mathcal{N}(x;\mu,\sigma^2)$. The joint density of the samples:

Idea: We choose the (μ, σ^2) that maximises the above, i.e.

This is called the *likelihood* of the parameters. The overall approach is therefore called *maximum likelihood estimation*.

Estimating the parameters

Instead of maximising the likelihood directly, it is often easier to maximise the log likelihood:

This is because the log of the product becomes the sum of logs, and we will see in a second why this is useful.

I also like minimising loss functions (instead of maximising things), so let us minimise the *negative log likelihood*:

Strategy: Set $\frac{\partial J}{\partial \mu} = 0$ and $\frac{\partial J}{\partial \sigma^2} = 0$ and solve jointly to find $\hat{\mu}$ and $\hat{\sigma}^2$. First we write out the negative log likelihood a bit more:

$$J(\mu, \sigma^2) = -\sum_{n=1}^{N} \log \left[\frac{1}{\sqrt{2\pi\sigma^2}} \exp \left\{ -\frac{(x^{(n)} - \mu)^2}{2\sigma^2} \right\} \right]$$

=

=

Then take the partial derivatives with respect to μ :

Then take the partial derivatives with respect to σ^2 :

And set the partial derivatives equal to zero:

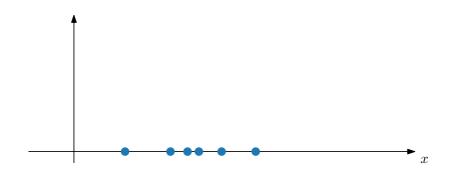
$$\frac{\partial J}{\partial \mu} = 0 :$$
$$\frac{\partial J}{\partial \sigma^2} = 0 :$$

More about the likelihood

$$p\left(x^{(1)}, x^{(2)}, \dots, x^{(N)}\right) = \mathcal{N}\left(x^{(1)}; \mu, \sigma^2\right) \cdot \mathcal{N}\left(x^{(2)}; \mu, \sigma^2\right) \cdots \mathcal{N}\left(x^{(N)}; \mu, \sigma^2\right)$$
$$= \prod_{n=1}^N \mathcal{N}\left(x^{(n)}; \mu, \sigma^2\right)$$

Negative log likelihood (NLL):

$$J(\mu, \sigma^2) = -\log \prod_{n=1}^N \mathcal{N}\left(x^{(n)}; \mu, \sigma^2\right) = -\sum_{n=1}^N \log \mathcal{N}\left(x^{(n)}; \mu, \sigma^2\right)$$



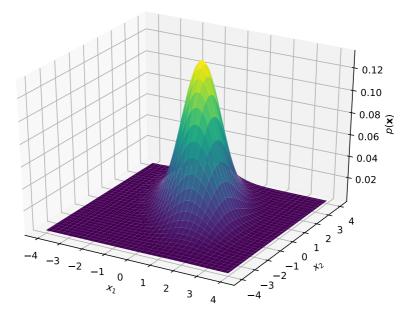
MLE for a multivariate Gaussian

Given samples $\left\{\mathbf{x}^{(n)}\right\}_{n=1}^N$ from a multivariate Gaussian:

$$p(\mathbf{x}) = \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2} |\boldsymbol{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right\}$$

then it can be shown in a similar way that the MLEs are:

$$\hat{\boldsymbol{\mu}} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}^{(n)}$$
$$\hat{\boldsymbol{\Sigma}} = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}^{(n)} - \hat{\boldsymbol{\mu}}) (\mathbf{x}^{(n)} - \hat{\boldsymbol{\mu}})^{\top}$$



Videos covered in this note

• Gaussians 1: Maximum likelihood estimation (20 min)