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Praobabilistic approaches in machine
learning

In many machine learning problems it is useful to have a way to deal
with uncertainty.

Probability theory gives us a principled way to do this.

A probabilistic perspective is also often useful for defining and com-
bining loss functions.

But to be able to follow a probabilistic approach, we need a way to
estimate the parameters in a probabilistic model.

Maximum likelihood estimation is one of the most fundamental
methods to set the parameters in a probabilistic model.

In this note we look at estimating the parameters of a Gaussian
distribution. But we will see that this same approach can be used
in many other machine learning models, with the steps proceeding
exactly as we do here.



The Gaussian distribution
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Maximum likelihood estimation for a
univariate Gaussian

Given samples (V. 2@ ... (™) from a univariate Gaussian with
unknown mean and variance, could we devise a way (maybe with a

“loss function”) to find optimal estimates of the mean [i and variance
~A29
fopdl

How would these estimates compare with the sample mean and vari-
ance?

We assume the samples are independent and identically distributed
(1ID), each a draw from the Gaussian N (z; i1, 0%). (Remember, we do
not know the mean or the variance, we only get to see the samples.)

Example



MLE for a univariate Gaussian

N
We are given IID samples {x(”)} L each a draw from N (x; u, 0?).

The joint density of the samples:

Idea: We choose the (11, 0?) that maximises the above, i.e.

This is called the likelihood of the parameters. The overall approach
is therefore called maximum likelihood estimation.



Estimating the parameters

Instead of maximising the likelihood directly, it is often easier to
maximise the log likelihood:

This is because the log of the product becomes the sum of logs, and
we will see in a second why this is useful.

| also like minimising loss functions (instead of maximising things), so
let us minimise the negative log likelihood:

Strategy: Set g—i =0 and % = 0 and solve jointly to find /i and 62.

First we write out the negative log likelihood a bit more:

I, 0%) = ‘élog M;—o— o {_WH



Then take the partial derivatives with respect to u:

Then take the partial derivatives with respect to o:

And set the partial derivatives equal to zero:
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More about the likelihood
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Negative log likelihood (NLL):
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MLE for a multivariate Gaussian

N
Given samples {x(”)} . from a multivariate Gaussian:
n=

1

p(x) = N(X;Ma Y) = W exp {—;(X — u)T2*1(x — ,J,)}

then it can be shown in a similar way that the MLEs are:
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Videos covered in this note

 Gaussians 1: Maximum likelihood estimation (20 min)
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https://youtu.be/i6Rp0eiINgM&list=PLmZlBIcArwhPnCzcSUU5mF90aU_dMSnZ2
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