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Overview
In many machine learning problems it is useful to have a way to deal
with uncertainty.

Probability theory gives us a principled way to do this.

A probabilistic perspective is also often useful for defining and com-
bining loss functions. For regression this was relatively easy, but for
other tasks like classification it isn’t always obvious which loss to use.

This note recaps the basics of probability theory.

If anything in this note looks unfamiliar, please revise these concepts
from your previous probability theory or statistics course.
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Notation
Some text books make a clear distinction between a random variable
X and a specific value x that this random variable can take on.

Some (many/most) machine learning text books take a massive short-
cut, which I will also use:

• x can refer either to the random variable itself or the value which
it takes on—this is inferred from the context.

• Densities are simply denoted as p(x), without a subscript indi-
cating the random variable.

• For discrete distributions, P (x) denotes the probability mass
function.

• Sometimes Pr(·) is used to explicitly denote the probability of
some event.

For expected values, different symbols are used: E[·], E[·], E [·], < · >

I will normally use E[·], but sometimes I could also write Ep(x)[·] to
explicitly denote the density (and the random variable) over which the
expectation is taken. Some people might use EX [·] for this purpose.

We can use the following shorthand to indicate the distribution which
a variable takes on:

z ∼ N (µ, σ2)

This means that z is a sample from a Gaussian distribution with density

p(z) = N (z; µ, σ2) = 1√
2πσ2

exp
{

−(z − µ)2

2σ2

}
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Densities for continuous and discrete
random variables

Continuous random variables:

Discrete random variables:

4



Expected values
Continuous:

E[g(x)] =
∫ ∞

−∞
g(x)p(x) dx

Discrete:
E[g(x)] =

∑
∀x

g(x)P (x)

Mean and variance:

mean [x] = E[x]
var [x] = E

[
(x − E[x])2

]
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Multiple random variables
Density:∫ x2

x1

∫ y2

y1
p(x, y) dx dy = Pr (x1 < x < x2, y1 < y < y2)

Expectations:

Ep(x,y) [g(x, y)] =
∫ ∞

−∞

∫ ∞

−∞
g(x, y)p(x, y) dx dy

Conditional probability:

p(x|y) = p(x, y)
p(y)

Bayes’ rule:
p(x|y) = p(y|x)p(x)

p(y)

Marginal probability:

p(x) =
∫ ∞

−∞
p(x, y) dy

P (x) =
∑
∀y

P (x, y)

When x and y are statistically independent:

p(x, y) = p(x)p(y)
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Reading
• Systems and Signals 344 notes
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