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Overfitting example
Suppose we want to fit a simple regression model (scalar input) using
basis functions to a training set with N = 10 items.

Our goal:
y ≈ Φw

If we use two basis functions, the shapes will be:

y ≈ Φw

If instead we use ten basis functions, the shapes will be:

y ≈ Φw

But this is solvable exactly! We have ten equations with ten unknowns
(the ten weights). So we can solve this exactly:

w = Φ−1y

Questions

• What would the value of the loss J be?

• Would this be a good fit? Would this model make good future
predictions?

Let us look at a few examples to develop an intuition for what happens
when the “complexity” of our model is similar to the number of data
points on which we train (or higher).
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Polynomial regression examples
Quadratic data
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With less training items

2 1 0 1 2
x

2

0

2

4

6

8

10

12

14
y

4



2 1 0 1 2
x

2

0

2

4

6

8

10

12

14
y

f(x) = 1.15 + 1.35x + 0.66x2
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Radial basis function examples
Basis functions:
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Basis functions:
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Year (x)
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Basis functions:

1880 1900 1920 1940 1960 1980 2000 2020
Year (x)
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RBF with c = [1900, 1901, . . . , 2000] and h = 1:
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Regularisation
We might want to fit higher-order models, but want a handle to control
their “complexity” in some way.

Idea:
ŵ = arg min

w
{J(w) + penalty(w)}

Penalty functions that constrain w to be small are sometimes called
shrinkage methods.

We consider two regularisation approaches:

• Ridge (L2) regularisation

• Lasso (L1) regularisation
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Ridge (L2) regularisation

Jλ(w) =
N∑

n=1

(
y(n) − f(x(n); w)

)2
+

We normally don’t regularise w0. Why not?

An easy hack if you don’t want to deal with w0 is to zero-mean your
data beforehand, i.e. the columns of X (or Φ) are normalised to have
a mean of 0 and the target vector y are normalised to have a mean
of 0.

We can then write the regulariser in vector form (good for vectorised
implementations):

Jλ(w) =
N∑

n=1

(
y(n) − f(x(n); w)

)2
+ λw⊤w

=

We can find a closed-form solution exactly as we did before:

ŵ =
(
X⊤X + λI

)−1
X⊤y
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Lasso (L1) regularisation

Jλ =
N∑

n=1

(
y(n) − f(x(n); w)

)2
+

This loss function is still convex (unique minimum) but not “smooth”
(differentiable in all places) so we can’t find a closed-form solution.

But other methods can be used to optimise it (e.g. gradient descent).

L1 regularisation has the effect of pushing weights to absolute 0. This
can be useful for interpreting data or a model (but be careful!).

Why does L1 push weights to zero but not L2 regularisation?

Just intuitively from the loss functions:

ISLR 6.2 gives a more formal explanation (non-examinable).
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Regularisation examples
RBF with c = [1900, 1901, . . . , 2000] and h = 1:
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Lasso and ridge regression on diabetes data:1
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1Example from scikit-learn.
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https://scikit-learn.org/stable/auto_examples/linear_model/plot_lasso_coordinate_descent_path.html


Videos covered in this note
• Linear regression 4: Overfitting (10 min)
• Linear regression 5: Regularisation (15 min)

Reading
• ISLR 6.2
• ISLR 6.2.1
• ISLR 6.2.2
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https://youtu.be/S7B3LQJrU0w&list=PLmZlBIcArwhNd_sWiz6f1-NHc3lg3k7PF
https://youtu.be/Zojp8z8GD8c&list=PLmZlBIcArwhNd_sWiz6f1-NHc3lg3k7PF
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