Polynomial regression and basis functions

Herman Kamper

2024-01, CC BY-SA 4.0

Linear and non-linear relationships

Linear relationship:

Non-linear relationship:

From multiple linear regression to polynomial regression

Multiple linear regression recap
Model:

$$
f(\mathbf{x} ; \mathbf{w})=w_{0}+w_{1} x_{1}+w_{2} x_{2}+\ldots+w_{D} x_{D}=\mathbf{w}^{\top} \mathbf{x}
$$

Fit on data $\left\{\left(\mathbf{x}^{(n)}, y^{(n)}\right)\right\}_{n=1}^{N}$ using the squared loss:

$$
\begin{aligned}
J(\mathbf{w}) & =\sum_{n=1}^{N}\left(y^{(n)}-f\left(\mathbf{x}^{(n)} ; \mathbf{w}\right)\right)^{2} \\
& =(\mathbf{y}-\mathbf{X} \mathbf{w})^{\top}(\mathbf{y}-\mathbf{X} \mathbf{w})
\end{aligned}
$$

with

$$
\mathbf{X}=\left[\begin{array}{c}
-\left(\mathbf{x}^{(1)}\right)^{\top}- \\
-\left(\mathbf{x}^{(2)}\right)^{\top}- \\
\vdots \\
-\left(\mathbf{x}^{(N)}\right)^{\top}-
\end{array}\right] \quad \text { and } \quad \mathbf{y}=\left[\begin{array}{c}
y^{(1)} \\
y^{(2)} \\
\vdots \\
y^{(N)}
\end{array}\right]
$$

Solution:

$$
\hat{\mathbf{w}}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}
$$

Polynomial regression

What if we want to fit:

$$
f\left(x ; w_{0}, w_{1}, w_{2}\right)=w_{0}+w_{1} x+w_{2} x^{2}
$$

Let us define:

$$
\phi(x)=
$$

We can then write:

$$
f(x ; \mathbf{w})=
$$

Now we can solve this problem exactly as for multiple linear regression by pretending that $\phi(\mathbf{x})$ is \mathbf{x}.

Our design matrix now becomes:

$$
\Phi=
$$

Example with multivariate input

For

$$
f(\mathbf{x} ; \mathbf{w})=w_{0}+w_{1} x_{1}+w_{2} x_{2}+w_{3} x_{1} x_{2}+w_{4} x_{1}^{2}+w_{5} x_{2}^{2}
$$

we would have

$$
\phi(\mathbf{x})=
$$

Polynomial regression examples

Quadratic polynomial:

Third-order polynomial:

Basis functions

Instead of just polynomials, we can actually put any function in

$$
\boldsymbol{\phi}(\mathbf{x})=\left[\begin{array}{llll}
\phi_{1}(\mathbf{x}) & \phi_{1}(\mathbf{x}) & \ldots & \phi_{K}(\mathbf{x})
\end{array}\right]^{\top}
$$

E.g. sin, cos, log, exp, FFT, etc.

This can be quite useful if we have some inside domain knowledge of the data and the problem.

Radial basis function (RBF)

An RBF is a function whose value depends on the distance between the input and some fixed point:

$$
\phi(\mathbf{x})=\exp \left\{\frac{-(\mathbf{x}-\mathbf{c})^{\top}(\mathbf{x}-\mathbf{c})}{h^{2}}\right\}
$$

Intuitively, it measures how far input \mathbf{x} is from \mathbf{c}, with h controlling how much we penalise points that are far way.

RBF in one dimension:

RBF in two dimensions:

Can even have a family of RBFs:

RBF basis functions examples

RBF with $c=[1900,1950,2000]$ and $h=20$:

RBF with $c=[1900,1910, \ldots, 2000]$ and $h=10$:

Videos covered in this note

- Linear regression 3: Polynomial regression and basis functions (15 min)

Reading

- ISLR 3.3.2
- ISLR 7.1
- ISLR 7.3

Figure from https://xkcd.com/2048/.

