Multiple linear regression

Herman Kamper

2024-01, CC BY-SA 4.0

Overview

In simple linear regression we have a single input feature x from which we want to predict a scalar output y.

In multiple linear regression, we instead have several input features, $x_{1}, x_{2}, \ldots, x_{D}$, from which we want to predict a scalar output y.

You can think of grouping all the input features into a feature vector x from which we now want to predict a scalar output y.

Boston house prices

Multiple linear regression

The model

$$
f\left(x_{1}, x_{2}, \ldots, x_{D} ; w_{0}, w_{1}, \ldots, w_{D}\right)=
$$

We can write this in vector form:

$$
f(\mathbf{x} ; \mathbf{w})=\mathbf{w}^{\top} \mathbf{x}
$$

where

$$
\mathbf{w}=\quad \text { and } \quad \mathbf{x}=
$$

The loss function

Squared loss:

$$
J(\mathbf{w})=\sum_{n=1}^{N}\left(y^{(n)}-f\left(\mathbf{x}^{(n)} ; \mathbf{w}\right)\right)^{2}
$$

Optimisation

We want to find the setting of the parameter vector \mathbf{w} that minimises the loss:

$$
\hat{\mathbf{w}}=\underset{\mathbf{w}}{\arg \min } J(\mathbf{w})
$$

Strategy: Set $\frac{\partial J}{\partial w_{0}}=0, \frac{\partial J}{\partial w_{1}}=0, \frac{\partial J}{\partial w_{2}}=0, \ldots$, and $\frac{\partial J}{\partial w_{D}}=0$, and solve the equations jointly.

Are you looking forward to deriving these equations one by one and then solving the $D+1$ equations jointly?

Idea: Rather write everything in vector form and set $\frac{\partial J}{\partial \mathbf{w}}=0$.
But what does it mean to take the derivative of a function with respect to a vector?

Interlude: Read the note on vector and matrix derivatives.

Writing the loss in matrix form

We want to minimise:

$$
\begin{aligned}
J(\mathbf{w}) & =\sum_{n=1}^{N}\left(y^{(n)}-f\left(\mathbf{x}^{(n)} ; \mathbf{w}\right)\right)^{2} \\
& =\sum_{n=1}^{N}\left(y^{(n)}-\mathbf{w}^{\top} \mathbf{x}^{(n)}\right)^{2}
\end{aligned}
$$

Define:

$$
\mathbf{X}=\quad \text { and } \quad \mathbf{y}=
$$

This allows us to write the loss as

$$
J(\mathbf{w})=(\mathbf{y}-\mathbf{X} \mathbf{w})^{\top}(\mathbf{y}-\mathbf{X w})
$$

This might be somewhat hard to see immediately, so let us just see how we get here. We define an error vector \mathbf{e} as:

$$
\mathrm{e}=
$$

This allows us to write the loss as

$$
J(\mathbf{w})=\sum_{n=1}^{N}\left(y^{(n)}-\mathbf{w}^{\top} \mathbf{x}^{(n)}\right)^{2}=\mathbf{e}^{\top} \mathbf{e}
$$

Since $\mathbf{e}=\mathbf{y}-\mathbf{X w}$, we get the loss in matrix form as in the equation above.

So why did we go through all that effort? We now have a form for $J(\mathbf{w})$ containing only matrices and vectors. This mean we can just use our vector and matrix derivatives to determine $\frac{\partial J}{\partial \mathbf{w}}$!

To do this, we just multiply out $J(\mathbf{w})$ a little bit more:

$$
J(\mathbf{w})=
$$

$$
=\mathbf{y}^{\top} \mathbf{y}-2 \mathbf{w}^{\top} \mathbf{X}^{\top} \mathbf{y}+\mathbf{w}^{\top} \mathbf{X}^{\top} \mathbf{X} \mathbf{w}
$$

Optimising the loss: The normal equations

Now we set $\frac{\partial J}{\partial w}=0$, i.e. $\frac{\partial J}{\partial w_{0}}=0, \frac{\partial J}{\partial w_{1}}=0, \ldots, \frac{\partial J}{\partial w_{D}}=0$.

$$
\frac{\partial J}{\partial \mathbf{w}}=\frac{\partial}{\partial \mathbf{w}}\left[\mathbf{y}^{\top} \mathbf{y}-2 \mathbf{w}^{\top} \mathbf{X}^{\top} \mathbf{y}+\mathbf{w}^{\top} \mathbf{X}^{\top} \mathbf{X} \mathbf{w}\right]
$$

$$
=
$$

$$
=
$$

In the second step above we used the following identities from Wikipedia:

$$
\begin{aligned}
\frac{\partial \mathbf{x}^{\top} \mathbf{a}}{\partial \mathbf{x}} & =\mathbf{a} \\
\frac{\partial \mathbf{x}^{\top} \mathbf{A} \mathbf{x}}{\partial \mathbf{x}} & =\left(\mathbf{A}+\mathbf{A}^{\top}\right) \mathbf{x}
\end{aligned}
$$

Now set $\frac{\partial J}{\partial \mathrm{w}}=0$:

$$
\mathbf{X}^{\top} \mathbf{X} \mathbf{w}=\mathbf{X}^{\top} \mathbf{y}
$$

This results in:

$$
\hat{\mathbf{w}}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}
$$

This is the solution to $D+1$ equations (the dimensionality of \mathbf{w}). This set of equations is called the normal equations.

The amazing thing here is that we can get this optimal setting $\hat{\mathbf{w}}$ using just one line of Python code!

Boston house prices fit

$f(\mathbf{x} ; \hat{\mathbf{w}})=\hat{w}_{0}+\hat{w}_{1} x_{1}+\hat{w}_{2} x_{2}=-1.358+5.095 x_{1}-0.642 x_{2}$

Videos covered in this note

- Linear regression 2.1: Multiple linear regression - Model and loss (16 min)
- Linear regression 2.2: Multiple linear regression - Optimisation (8 min)

Reading

- ISLR 3.2 intro
- ISLR 3.2.1

