
Multiple linear regression

Herman Kamper

2024-01, CC BY-SA 4.0

1

https://www.kamperh.com/
https://creativecommons.org/licenses/by-sa/4.0/

Overview
In simple linear regression we have a single input feature x from which
we want to predict a scalar output y.

In multiple linear regression, we instead have several input features,
x1, x2, . . . , xD, from which we want to predict a scalar output y.

You can think of grouping all the input features into a feature vector
x from which we now want to predict a scalar output y.

2

Boston house prices

Rooms

4567
8

9

% Low status

0 5 10 15 20 25 30 35

Price ($1000s)

10

20

30

40

50

3

Multiple linear regression

The model
f(x1, x2, . . . , xD; w0, w1, . . . , wD) =

We can write this in vector form:

f(x; w) = w⊤x

where

w = and x =

The loss function
Squared loss:

J(w) =
N∑

n=1

(
y(n) − f(x(n); w)

)2

=

4

Optimisation
We want to find the setting of the parameter vector w that minimises
the loss:

ŵ = arg min
w

J(w)

Strategy: Set ∂J
∂w0

= 0, ∂J
∂w1

= 0, ∂J
∂w2

= 0, . . . , and ∂J
∂wD

= 0, and
solve the equations jointly.

Are you looking forward to deriving these equations one by one and
then solving the D + 1 equations jointly?

Idea: Rather write everything in vector form and set ∂J
∂w = 0.

But what does it mean to take the derivative of a function with respect
to a vector?

Interlude: Read the note on vector and matrix derivatives.

5

Writing the loss in matrix form
We want to minimise:

J(w) =
N∑

n=1

(
y(n) − f(x(n); w)

)2

=
N∑

n=1

(
y(n) − w⊤x(n)

)2

Define:

X = and y =

This allows us to write the loss as

J(w) = (y − Xw)⊤ (y − Xw)

This might be somewhat hard to see immediately, so let us just see
how we get here. We define an error vector e as:

e =

This allows us to write the loss as

J(w) =
N∑

n=1

(
y(n) − w⊤x(n)

)2
= e⊤e

6

Since e = y − Xw, we get the loss in matrix form as in the equation
above.

So why did we go through all that effort? We now have a form for
J(w) containing only matrices and vectors. This mean we can just
use our vector and matrix derivatives to determine ∂J

∂w !

To do this, we just multiply out J(w) a little bit more:

J(w) =

= y⊤y − 2w⊤X⊤y + w⊤X⊤Xw

7

Optimising the loss: The normal equations
Now we set ∂J

∂w = 0, i.e. ∂J
∂w0

= 0, ∂J
∂w1

= 0, . . . , ∂J
∂wD

= 0.

∂J

∂w
= ∂

∂w
[
y⊤y − 2w⊤X⊤y + w⊤X⊤Xw

]

=

=

In the second step above we used the following identities from
Wikipedia:

∂x⊤a
∂x

= a

∂x⊤Ax
∂x

= (A + A⊤)x

Now set ∂J
∂w = 0:

X⊤Xw = X⊤y

This results in:
ŵ =

(
X⊤X

)−1
X⊤y

This is the solution to D + 1 equations (the dimensionality of w).
This set of equations is called the normal equations.

The amazing thing here is that we can get this optimal setting ŵ
using just one line of Python code!

8

http://en.wikipedia.org/wiki/Matrix_calculus

Boston house prices fit

Rooms

4567
8

9

% Low status

0 5 10 15 20 25 30 35

Price ($1000s)

10

0

10

20

30

40

50

f(x; ŵ) = ŵ0 + ŵ1x1 + ŵ2x2 = −1.358 + 5.095x1 − 0.642x2

9

Videos covered in this note
• Linear regression 2.1: Multiple linear regression - Model and loss

(16 min)
• Linear regression 2.2: Multiple linear regression - Optimisation

(8 min)

Reading
• ISLR 3.2 intro
• ISLR 3.2.1

10

https://youtu.be/zu34zcyAFzU
https://youtu.be/QHgjzFm6vnU

	Overview
	Boston house prices
	Multiple linear regression
	The model
	The loss function
	Optimisation

	Writing the loss in matrix form
	Optimising the loss: The normal equations
	Boston house prices fit
	Videos covered in this note
	Reading

