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Winning 100-metre men’s Olympic time
from 1896 to 2008
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Missing years: 1914, 1940, 1944

Given the data that do have, could we predict what the winning times
would have been for those missing years?

And could we predict the winning time for 2012, the year just following
the data?
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Model
A simple linear regression model predicts the output as a linear function
of the input feature x:

f(x; w0, w1) = w0 + w1x

We refer to w0 and w1 as the parameters of the model.

To choose w0 and w1, we are given a dataset of previous input-output
measurements:{

(x(1), y(1)), (x(2), y(2)), . . . , (x(N), y(N))
}

I will sometimes just write this as:{
(x(n), y(n))

}N

n=1

In our example, each of the N points would correspond to a year x
with the corresponding winning time for that year y.

How do we choose w0 and w1 based on the data? We need some way
to measure the “goodness” or “badness” of the parameters, given the
data.
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Loss function
(Sometimes also called the cost function.)
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How “good” is the fit of w0 and w1 to the data?

J(w0, w1) =
N∑

n=1

(
y(n) − f(x(n); w0, w1)

)2

This is called the squared loss (or the squared error loss or the least
squares criterion or the residual sum of squares).
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Optimisation
We want to find the w0 and w1 that minimise the loss J(w0, w1):

ŵ0, ŵ1 = arg min
w0,w1

J(w0, w1)

The loss J as a function of w0 and w1:
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J

Strategy: Set ∂J
∂w0

= 0 and ∂J
∂w1

= 0

Expand the loss:

J(w0, w1) =
N∑

n=1

(
y(n) − f(x(n); w0, w1)

)2

=
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Take the partial derivative of the loss with respect to w0 and set it
equal to 0:

w0 = 1
N

N∑
n=1

y(n) − w1
1
N

N∑
n=1

x(n)

ŵ0 =

Next take the partial derivative of the loss with respect to w1:

∂J

∂w1
=

N∑
n=1

∂

∂w1

(
y(n) − (w0 + w1x

(n))
)2

=

=
N∑

n=1
2

(
y(n) − ȳ − w1(x(n) − x̄)

)
(−1)(x(n) − x̄)

Set ∂J
∂w1

= 0:

ŵ1 =
∑N

n=1(y(n) − ȳ)(x(n) − x̄)∑N
n=1(x(n) − x̄)2
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A convex loss
Technically, setting the partial derivatives to zero isn’t enough: this
could have been a maximum instead of a minimum! We should also
show that

∂2J

∂w2
0

> 0 and ∂2J

∂w2
1

> 0

As an exercise, show that this is true for the simple linear regression
model.

In general, if the above property holds for all parameters, we call the
loss a convex loss function. Later on we will also look at strategies for
optimising loss functions which are non-convex.
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Returning to our example: Model fit
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• Estimated winning time in 1914: 10.901 s

• Estimated winning time in 2012: 9.595 s (actual time: 9.63 s)

• Estimated winning time in 2592: 1.863 s

8



Videos covered in this note
• Linear regression 1: Simple linear regression (14 min)

Reading
• ISLR 3 intro
• ISLR 3.1 intro
• ISLR 3.1.1
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