Learning Dynamics of Linear Denoising Autoencoders

Arnu Pretorius, Steve Kroon and Herman Kamper

Stellenbosch University, South Africa

35th International Conference on Machine Learning, 2018

Linear denoising autoencoders (DAE)

Linear denoising autoencoders (DAE)

• Exact solutions to the nonlinear dynamics of learning in deep linear neural networks, Saxe, McClelland, Ganguli. ICLR, 2014.

• Fixed point:
$$w^* = \frac{\lambda}{\lambda + \epsilon}$$

Experimental results: Linear autoencoder networks

4

Thank you for listening!

Source code to reproduce all the results https: //github.com/arnupretorius/lindaedynamics_icml2018

Optimal discrete time learning rates

• Ratio for DAE to WDAE:

$$R = \frac{2\lambda + \gamma}{2\lambda + 3\varepsilon}$$

Motivation for weight decay

• Smaller weights \implies smoother models \implies better generalisation

Motivation for weight decay

- \bullet Smaller weights \implies smoother models \implies better generalisation
- Small weight initialisation?

Motivation for weight decay

- Smaller weights \implies smoother models \implies better generalisation
- Small weight initialisation?

