

# ASR-free CNN-DTW keyword spotting using multilingual bottleneck features for almost zero-resource languages

Raghav Menon, Stellenbosch University, South Africa Herman Kamper, Stellenbosch University, South Africa Emre Yilmaz, Radbound University & National University of Singapore John Quinn, UN Global Pulse, Kampala, Uganda Thomas Niesler, Stellenbosch University, South Africa

August 2018



- ► Social media has become popular for voicing social concerns and views.
- Not true when internet accessibility is poor
- United Nations (UN) survey shows that in Uganda phone-in talk shows are the medium of choice outside metropolitan areas.
- Radio browsing system have been actively supporting UN relief and development programmes by monitoring this medium.
- However these systems are highly dependent on transcribed speech in the target language.
- Radio browsing systems for Acholi and Luganda using approximately 9 hours of data was developed and it took many months to obtain the data.
- We describe a keyword spotting system which relies on only a small number of isolated repetitions of keywords and a large body of untranscribed data.

#### Radio browsing system









- In-domain data: 40 keywords, each spoken twice by 24 South African speakers (12 male, 12 females).
- **Untranscribed data:** 23-hour South African Broadcast News (SABN) corpus.
  - Mix of English newsreader speech, interviews and crossings to reporters broadcast between 1996 and 2006.

|       | Utterances | Speech (h) |
|-------|------------|------------|
| Train | 5231       | 7.94       |
| Dev   | 2988       | 5.37       |
| Test  | 5226       | 10.33      |
| Total | 13445      | 23.64      |

# Keyword spotting approaches



- Dynamic time warping (DTW)
  - ▶ Good in low resource setting but prohibitively slow as it requires repeated alignment
  - ▶ Isolated words are slid one at a time over the search audio with a 3 frame skip.
  - Normalized per frame cosine cost.
  - Presence or absence of keyword determined using appropriate threshold.
- Convolutional neural network (CNN) classifier
  - The CNN was trained as a end-to-end classifier with each keyword example.
  - ▶ CNN consists of 3 convolutional layers with max pooling followed by 3 dense layers.
  - Input size restricted to 60 frames.
  - Presence or absence of keyword based on appropriate threshold.

DTW and CNN are baselines.

# Keyword spotting approaches



- CNN-DTW keyword spotting
  - CNN-DTW keyword spotting approach uses DTW to generate training data for CNN.
  - Scores calculated between the small set of isolated keywords and a much larger untranscribed dataset which are subsequently used as targets to train a CNN.



MFCC, bottleneck and autoencoder features considered.

## Bottleneck and Autoencoder features



- ► Large annotated speech resources exist for well-resourced languages.
- We investigate whether these resources can be used to improve the performance of our CNN-DTW.
- Bottleneck features
  - <u>2-language TDNN</u>: A 11-layer 2-language TDNN trained using the FAME and CGN corpora comprising of approximately 887 hrs of Flemish and Dutch data.
  - 10-language TDNN: A 6-layer 10-language TDNN was trained on Globalphone corpus containing 198 hrs of training data.
- Autoencoder features
  - ► An autoencoder is a neural network used to reconstruct its input.
  - Can be trained when large amounts of unlabelled data available.
  - Like the BNFs, autoencoders can be trained on different languages.
  - ▶ We obtain a 7-layer stacked denoising autoencoder by training each layer individually.
  - Languages used were Acholi (160 hrs), Luganda (154 hrs), Lugbara (9.45 hrs), Rutaroo (7.82 hrs) and Somali (18 hrs).



- ► Three baseline systems are considered
  - DTW-QbyE where DTW is performed for each exemplar keyword on each utterance and the resulting scores averaged.
  - <u>DTW-KS</u> best score over all exemplars of a keyword type is used.
  - <u>CNN</u> An end-to-end CNN classifier trained only on the isolated keywords.
- ► CNN-DTW is supervised by the DTW-KS system.
- SABN transcriptions not used for training or validation, but were used to access accuracy.
- ▶ Hyper-parameters optimized by minimizing the target loss on the development set.
- ▶ Performance is reported in terms of AUC and EER.

## Experimental Results

- We consider four feature extractors:
  - Stacked Autoencoder.
  - the 2-language TDNN without speaker normalisation.
  - ▶ the 10-language TDNN without speaker normalisation.
  - ▶ the 10-language TDNN with speaker normalisation.

| Model               | dev    |        |  |  |
|---------------------|--------|--------|--|--|
| Woder               | AUC    | EER    |  |  |
| MFCC                | 0.7556 | 0.3092 |  |  |
| SAE                 | 0.5247 | 0.4844 |  |  |
| TDNN-BNF-2lang      | 0.7273 | 0.3356 |  |  |
| TDNN-BNF-10lang     | 0.7725 | 0.2884 |  |  |
| TDNN-BNF-10lang-SPN | 0.7781 | 0.2872 |  |  |



|             | AUC    |        |        |        | EER    |        |        |        |
|-------------|--------|--------|--------|--------|--------|--------|--------|--------|
| Model       | dev    |        | test   |        | dev    |        | test   |        |
|             | MFCC   | BNF    | MFCC   | BNF    | MFCC   | BNF    | MFCC   | BNF    |
| CNN         | 0.5698 | 0.5298 | 0.5448 | 0.5364 | 0.4435 | 0.4813 | 0.4771 | 0.4725 |
| DTW-QbyE    | 0.6639 | 0.6899 | 0.6612 | 0.6873 | 0.3864 | 0.3556 | 0.3885 | 0.3661 |
| DTW-KS      | 0.7556 | 0.7781 | 0.7515 | 0.7699 | 0.3092 | 0.2872 | 0.3162 | 0.3012 |
| CNN-DTW     | 0.6360 | 0.7537 | 0.6285 | 0.7422 | 0.4073 | 0.3058 | 0.4161 | 0.3214 |
| CNN-DTW-GNL | 0.6443 | 0.7535 | 0.6357 | 0.7518 | 0.4036 | 0.3091 | 0.4092 | 0.3153 |

#### Experimental results









- We investigated the use of multilingual bottleneck (BNF) and autoencoder features in a CNN-DTW keyword spotter.
- The autoencoder features and BNFs trained on two languages did not improve performance over MFCCs, but BNFs trained on a corpus of 10 languages lead to substantial improvements.
- We conclude that our CNN-DTW approach, which combines the low-resource advantages of DTW with the speed advantages of CNN, benefits from incorporating labelled data from other well-resourced languages through the use of BNFs.