Deep learning for (more than) speech recognition

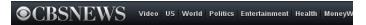
IndabaX Western Cape, UCT, Apr. 2018

Herman Kamper

E&E Engineering, Stellenbosch University http://www.kamperh.com/

Success in automatic speech recognition (ASR)

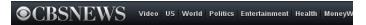
Success in automatic speech recognition (ASR)



By BRIAN MASTROIANNI / CBS NEWS / October 18, 2016, 3:56 PM

Microsoft says speech recognition technology reaches "human parity"

Success in automatic speech recognition (ASR)



By BRIAN MASTROIANNI / CBS NEWS / October 18, 2016, 3:56 PM

Microsoft says speech recognition technology reaches "human parity"

[Xiong et al., arXiv'16]; [Saon et al., arXiv'17]

1. State-of-the-art automatic speech recognition (ASR)

- 1. State-of-the-art automatic speech recognition (ASR)
- 2. Examples of non-ASR speech processing

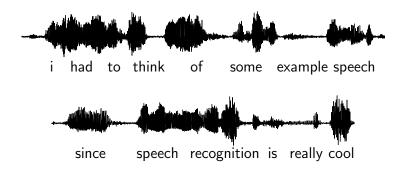
- 1. State-of-the-art automatic speech recognition (ASR)
- 2. Examples of non-ASR speech processing (the first rant)

- 1. State-of-the-art automatic speech recognition (ASR)
- 2. Examples of non-ASR speech processing (the first rant)
- 3. Examples of local work

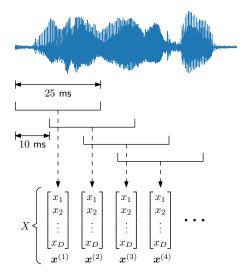
- 1. State-of-the-art automatic speech recognition (ASR)
- 2. Examples of non-ASR speech processing (the first rant)
- 3. Examples of local work (a second rant)

State-of-the-art speech recognition

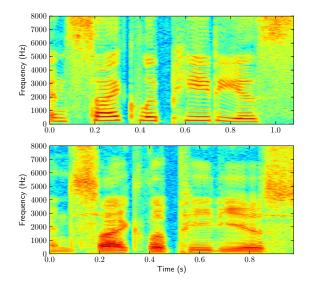
Supervised speech recognition



Feature extraction for speech processing



Feature extraction for speech processing



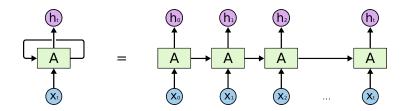
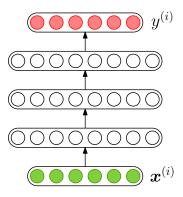


Image: http://colah.github.io/posts/2015-08-Understanding-LSTMs/



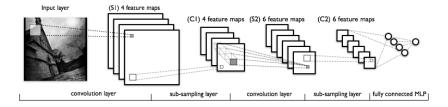
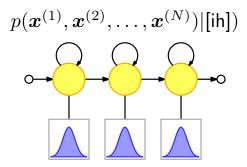


Image: http://deeplearning.net/tutorial/lenet.html



A long time ago in a galaxy far, far away....

$$W^* = \underset{W}{\arg\max} P(W = w^{(1)}, w^{(2)}, \dots w^{(M)} | X = \boldsymbol{x}^{(1)}, \boldsymbol{x}^{(2)}, \dots, \boldsymbol{x}^{(N)})$$

$$W^* = \underset{W}{\arg \max} P(W = w^{(1)}, w^{(2)}, \dots w^{(M)} | X = \boldsymbol{x}^{(1)}, \boldsymbol{x}^{(2)}, \dots, \boldsymbol{x}^{(N)})$$

= $\underset{W}{\arg \max} P(W | X)$

$$\begin{split} W^* &= \mathop{\arg\max}_{W} P(W = w^{(1)}, w^{(2)}, \dots w^{(M)} | X = \pmb{x}^{(1)}, \pmb{x}^{(2)}, \dots, \pmb{x}^{(N)}) \\ &= \mathop{\arg\max}_{W} P(W | X) \\ &= \mathop{\arg\max}_{W} \sum_{U} P(W, U | X) \qquad [\text{ "without"} = /\text{w in th aw t/ }] \end{split}$$

$$\begin{split} W^* &= \mathop{\arg\max}_{W} P(W = w^{(1)}, w^{(2)}, \dots w^{(M)} | X = \pmb{x}^{(1)}, \pmb{x}^{(2)}, \dots, \pmb{x}^{(N)}) \\ &= \mathop{\arg\max}_{W} P(W | X) \\ &= \mathop{\arg\max}_{W} \sum_{U} P(W, U | X) \qquad [\text{ "without"} = /\texttt{w} \text{ if th aw t/ }] \\ &= \mathop{\arg\max}_{W} \sum_{U} \frac{p(W, U, X)}{p(X)} \end{split}$$

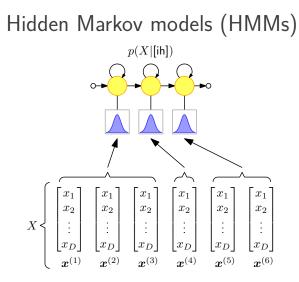
$$\begin{split} W^* &= \arg \max_{W} P(W = w^{(1)}, w^{(2)}, \dots w^{(M)} | X = x^{(1)}, x^{(2)}, \dots, x^{(N)}) \\ &= \arg \max_{W} P(W | X) \\ &= \arg \max_{W} \sum_{U} P(W, U | X) \quad [\text{ "without"} = /\text{w ih th aw t/}] \\ &= \arg \max_{W} \sum_{U} \frac{p(W, U, X)}{p(X)} \\ &= \arg \max_{W} \sum_{U} p(X | W, U) P(U | W) P(W) \end{split}$$

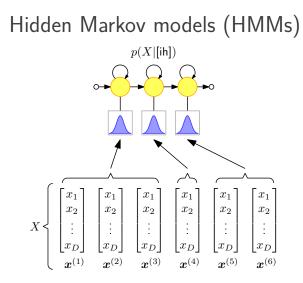
$$\begin{split} W^* &= \operatorname*{arg\,max}_W P(W = w^{(1)}, w^{(2)}, \dots w^{(M)} | X = \boldsymbol{x}^{(1)}, \boldsymbol{x}^{(2)}, \dots, \boldsymbol{x}^{(N)}) \\ &= \operatorname*{arg\,max}_W P(W | X) \\ &= \operatorname*{arg\,max}_W \sum_U P(W, U | X) \quad [\text{``without''} = /\text{w ih th aw t/}] \\ &= \operatorname*{arg\,max}_W \sum_U \frac{p(W, U, X)}{p(X)} \\ &= \operatorname*{arg\,max}_W \sum_U p(X | W, U) P(U | W) P(W) \\ &\approx \operatorname*{arg\,max}_W \max_U p(X | W, U) P(U | W) P(W) \end{split}$$

$$\begin{split} W^* &= \operatorname*{arg\,max}_W P(W = w^{(1)}, w^{(2)}, \dots w^{(M)} | X = \boldsymbol{x}^{(1)}, \boldsymbol{x}^{(2)}, \dots, \boldsymbol{x}^{(N)}) \\ &= \operatorname*{arg\,max}_W P(W | X) \\ &= \operatorname*{arg\,max}_W \sum_U P(W, U | X) \quad [\text{ "without"} = / \text{w ih th aw t/}] \\ &= \operatorname*{arg\,max}_W \sum_U \frac{p(W, U, X)}{p(X)} \\ &= \operatorname*{arg\,max}_W \sum_U p(X | W, U) P(U | W) P(W) \\ &\approx \operatorname*{arg\,max}_W \max_U p(X | W, U) P(U | W) P(W) \\ &\approx \operatorname*{arg\,max}_W \max_U p(X | U) P(U | W) P(W) \\ &\approx \operatorname*{arg\,max}_W \max_U p(X | U) P(U | W) P(W) \end{split}$$

$$\begin{split} W^* &= \operatorname*{arg\,max}_W P(W = w^{(1)}, w^{(2)}, \dots w^{(M)} | X = \boldsymbol{x}^{(1)}, \boldsymbol{x}^{(2)}, \dots, \boldsymbol{x}^{(N)}) \\ &= \operatorname*{arg\,max}_W P(W | X) \\ &= \operatorname*{arg\,max}_W \sum_U P(W, U | X) \quad [\text{ "without"} = / \text{w ih th aw t/}] \\ &= \operatorname*{arg\,max}_W \sum_U \frac{p(W, U, X)}{p(X)} \\ &= \operatorname*{arg\,max}_W \sum_U p(X | W, U) P(U | W) P(W) \\ &\approx \operatorname*{arg\,max}_W \max_U p(X | W, U) P(U | W) P(W) \\ &\approx \operatorname*{arg\,max}_W \max_U p(X | U) P(U | W) P(W) \\ &\approx \operatorname*{arg\,max}_W \max_U p(X | U) P(U | W) P(W) \end{split}$$

p(X|U): acoustic model P(U|W): pronunciation dictionary P(W): language model

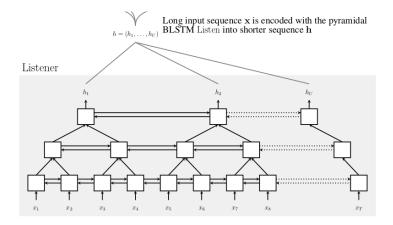




Speech recognition was performed by combining acoustic model (thousands of HMM states) with pronunciation dictionary and language model in (very big) decoder network (finite state machine).

Back to today: End-to-end speech recognition

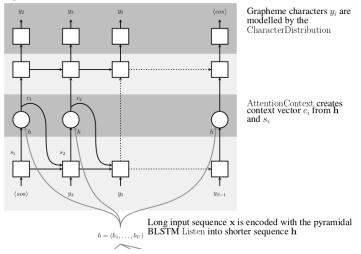
Back to today: End-to-end speech recognition



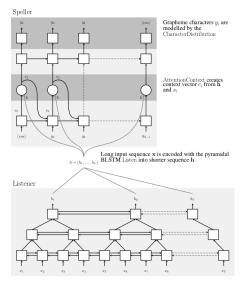
[Chan et al., arXiv'15]

End-to-end speech recognition

Speller



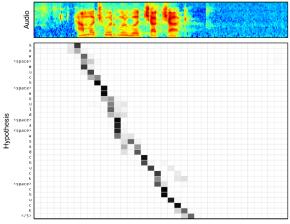
End-to-end speech recognition



[Chan et al., arXiv'15]

End-to-end speech recognition

Alignment between the Characters and Audio



Time

[Chan et al., arXiv'15]

Why did we talk about HMMs?

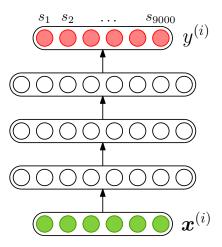
 Could we use a standard feedforward deep neural network (DNN) for ASR?

- Could we use a standard feedforward deep neural network (DNN) for ASR?
- Idea: Use HMM to obtain frame alignments for DNN!

- Could we use a standard feedforward deep neural network (DNN) for ASR?
- Idea: Use HMM to obtain frame alignments for DNN!
- Hybrid model: DNN-HMM

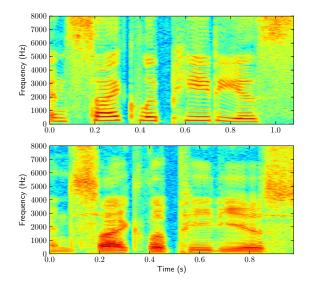
- Could we use a standard feedforward deep neural network (DNN) for ASR?
- Idea: Use HMM to obtain frame alignments for DNN!
- Hybrid model: DNN-HMM
- Can be seen as representation learning trained jointly with classifier

- Could we use a standard feedforward deep neural network (DNN) for ASR?
- Idea: Use HMM to obtain frame alignments for DNN!
- Hybrid model: DNN-HMM
- Can be seen as representation learning trained jointly with classifier



What about convolutional neural networks?

What about convolutional neural networks?



- End-to-end models are easier to implement¹
- But, do they give state-of-the-art performance?

- End-to-end models are easier to implement¹
- But, do they give state-of-the-art performance?
- What do you think CLDNN-HMM² stands for?

- End-to-end models are easier to implement¹
- But, do they give state-of-the-art performance?
- What do you think CLDNN-HMM² stands for?

- End-to-end models are easier to implement¹
- But, do they give state-of-the-art performance?
- What do you think CLDNN-HMM² stands for?

CONVOLUTIONAL, LONG SHORT-TERM MEMORY, FULLY CONNECTED DEEP NEURAL NETWORKS

Tara N. Sainath, Oriol Vinyals, Andrew Senior, Haşim Sak

Google, Inc., New York, NY, USA {tsainath, vinyals, andrewsenior, hasim}@google.com

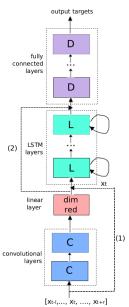
¹https://github.com/espnet/espnet ²[Sainath et al., ICASSP'15]

- End-to-end models are easier to implement¹
- But, do they give state-of-the-art performance?
- What do you think CLDNN-HMM² stands for?

CONVOLUTIONAL, LONG SHORT-TERM MEMORY, FULLY CONNECTED DEEP NEURAL NETWORKS

Tara N. Sainath, Oriol Vinyals, Andrew Senior, Haşim Sak

Google, Inc., New York, NY, USA {tsainath, vinyals, andrewsenior, hasim}@google.com



¹https://github.com/espnet/espnet ²

²[Sainath et al., ICASSP'15]

• Very important engineering endeavour: information access, illiteracy, assistance for the disabled

- Very important engineering endeavour: information access, illiteracy, assistance for the disabled
- But it is more: speech and language makes us human

- Very important engineering endeavour: information access, illiteracy, assistance for the disabled
- But it is more: speech and language makes us human
- Engineering decisions can tell us something about how we perceive the world: saw how structure helps in speech recognition models

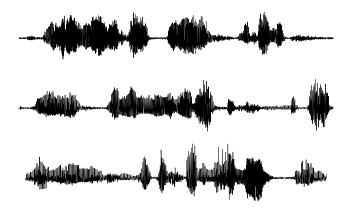
- Very important engineering endeavour: information access, illiteracy, assistance for the disabled
- But it is more: speech and language makes us human
- Engineering decisions can tell us something about how we perceive the world: saw how structure helps in speech recognition models
- And studies about how we perceive the world can tell us something about better engineering decisions

Rant 1: Do we always need/have ASR?

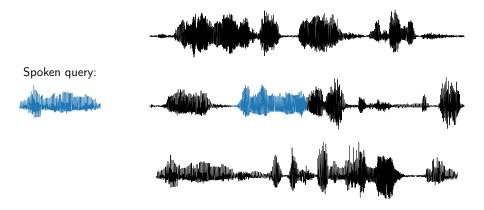
Examples of non-ASR speech processing

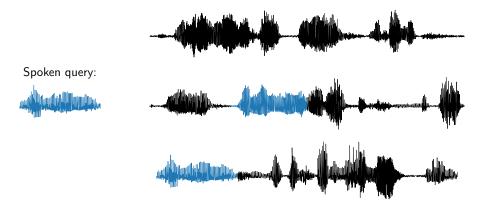
What if we do not have supervision?

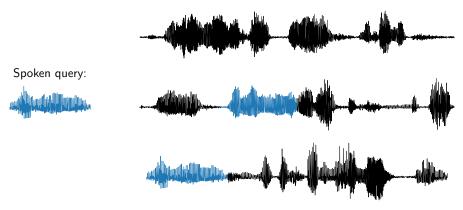
- Google Voice: English, Spanish, German, ..., Zulu (~50 languages)
- Data: 2000 hours transcribed speech audio; ${\sim}350M/560M$ words text
- Can we do this for all 7000 languages spoken in the world?
- Many of these languages are endangered and unwritten











Useful speech system, not requiring any transcribed speech

Example 2: Linguistic and cultural documentation

http://www.stevenbird.net/

Example 2: Linguistic and cultural documentation

Academics team up to save dying languages

25/3/2014

A beautifully crafted documentary about Aikuma by Thom Cookes which aired on ABC's

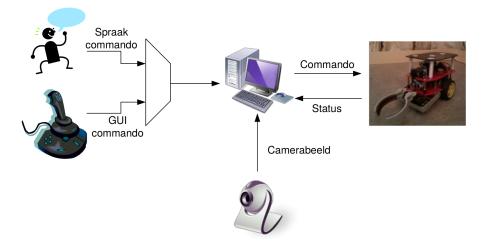
Tweet 0

program The World. This video included a segment about Lauren Gawne and her work on Kagate (Nepal).

http://www.stevenbird.net/

f Like < 0

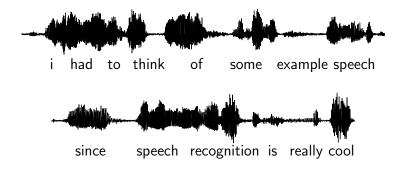
Example 3: Learning robots to understand speech



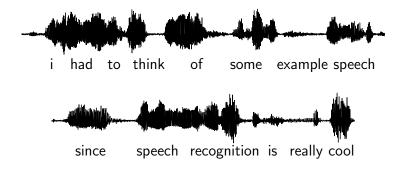
[Janssens and Renkens, 2014]; [Renkens et al., SLT'14]

Rant 2: Taking inspiration from humans Examples of local work

Supervised speech recognition



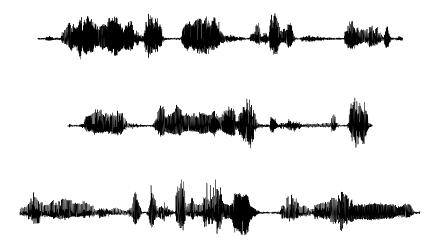
Supervised speech recognition



Can we acquire language from audio alone?

Full-coverage segmentation and clustering

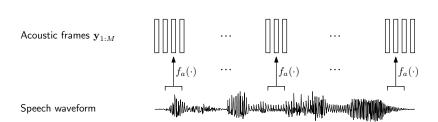
Full-coverage segmentation and clustering

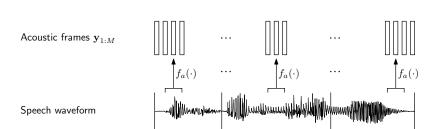


Full-coverage segmentation and clustering

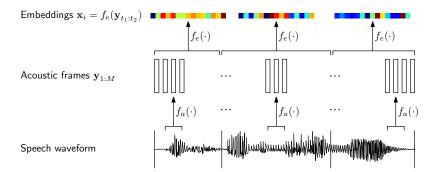


Speech waveform



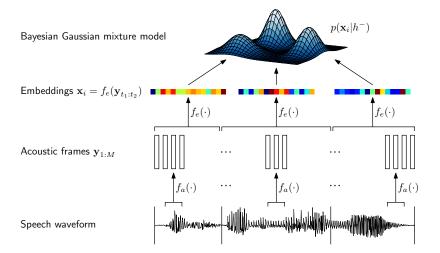


32 / 40

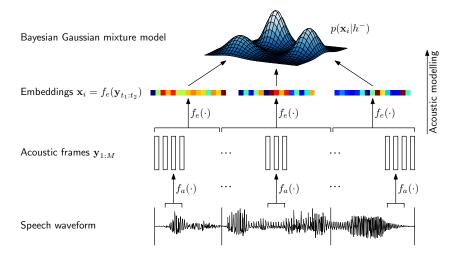


32 / 40

Unsupervised segmental Bayesian model

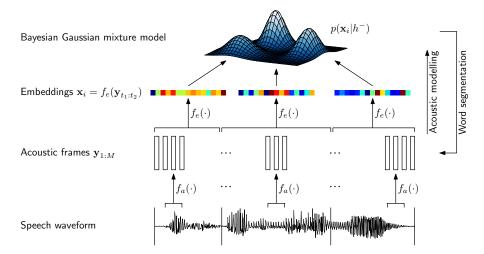


Unsupervised segmental Bayesian model



32 / 40

Unsupervised segmental Bayesian model



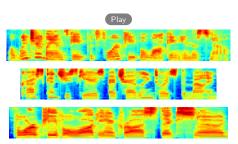
Listen to discovered clusters

- Small-vocabulary cluster 45: Play
- Large-vocabulary English cluster 1214: Play
- Large-vocabulary Xitsonga cluster 629: Play

Using images for grounding language

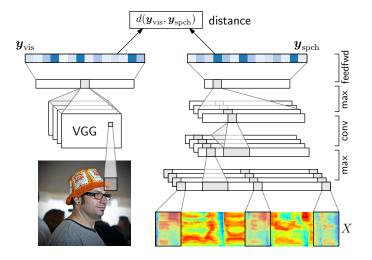
Using images for grounding language

Consider images paired with unlabellel spoken captions:



Map images and speech into common space

Map images and speech into common space



[Harwath et al., NIPS'16]

Keyword	Example of matched utterance	Туре
beach	(one of top 10)	
behind		
bike		
boys		
large		
play		
sitting		
yellow		
young		

Keyword	Example of matched utterance	Туре
beach	a boy in a yellow shirt is walking on a beach	
behind		
bike		
boys		
large		
play		
sitting		
yellow		
young		

Keyword	Example of matched utterance	Туре
beach	a boy in a yellow shirt is walking on a beach	correct
behind		
bike		
boys		
large		
play		
sitting		
yellow		
young		

Keyword	Example of matched utterance	Туре
beach	a boy in a yellow shirt is walking on a beach	correct
behind	a surfer does a flip on a wave	
bike		
boys		
large		
play		
sitting		
yellow		
young		

Keyword	Example of matched utterance	Туре
beach	a boy in a yellow shirt is walking on a beach	correct
behind	a surfer does a flip on a wave	mistake
bike		
boys		
large		
play		
sitting		
yellow		
young		

Keyword	Example of matched utterance	Туре
beach	a boy in a yellow shirt is walking on a beach	correct
behind	a surfer does a flip on a wave	mistake
bike	a dirt biker flies through the air	
boys		
large		
play		
sitting		
yellow		
young		

Keyword	Example of matched utterance	Туре
beach	a boy in a yellow shirt is walking on a beach	correct
behind	a surfer does a flip on a wave	mistake
bike	a dirt biker flies through the air	variant
boys		
large		
play		
sitting		
yellow		
young		

Keyword	Example of matched utterance	Туре
beach	a boy in a yellow shirt is walking on a beach	correct
behind	a surfer does a flip on a wave	mistake
bike	a dirt biker flies through the air	variant
boys	Play	
large		
play		
sitting		
yellow		
young		

Keyword	Example of matched utterance	Туре
beach	a boy in a yellow shirt is walking on a beach	correct
behind	a surfer does a flip on a wave	mistake
bike	a dirt biker flies through the air	variant
boys	two children play soccer in the park	
large		
play		
sitting		
yellow		
young		

Keyword	Example of matched utterance	Туре
beach	a boy in a yellow shirt is walking on a beach	correct
behind	a surfer does a flip on a wave	mistake
bike	a dirt biker flies through the air	variant
boys	two children play soccer in the park	semantic
large		
play		
sitting		
yellow		
young		

Keyword	Example of matched utterance	Туре
beach	a boy in a yellow shirt is walking on a beach	correct
behind	a surfer does a flip on a wave	mistake
bike	a dirt biker flies through the air	variant
boys	two children play soccer in the park	semantic
large	Play	
play		
sitting		
yellow		
young		

Keyword	Example of matched utterance	Туре
beach	a boy in a yellow shirt is walking on a beach	correct
behind	a surfer does a flip on a wave	mistake
bike	a dirt biker flies through the air	variant
boys	two children play soccer in the park	semantic
large	a rocky cliff overlooking a body of water	
play		
sitting		
yellow		
young		

Keyword	Example of matched utterance	Туре
beach	a boy in a yellow shirt is walking on a beach	correct
behind	a surfer does a flip on a wave	mistake
bike	a dirt biker flies through the air	variant
boys	two children play soccer in the park	semantic
large	a rocky cliff overlooking a body of water	semantic
play		
sitting		
yellow		
young		

Keyword	Example of matched utterance	Туре
beach	a boy in a yellow shirt is walking on a beach	correct
behind	a surfer does a flip on a wave	mistake
bike	a dirt biker flies through the air	variant
boys	two children play soccer in the park	semantic
large	a rocky cliff overlooking a body of water	semantic
play	children playing in a ball pit	variant
sitting	two people are seated at a table with drinks	semantic
yellow	a tan dog jumping over a red and blue toy	mistake
young	a little girl on a kid swing	semantic

Summary and conclusion

What did we chat about today?

- Supervised speech recognition: From HMMs all the way to CLDNNs
- Structure is still important in speech recognition
- Saw three examples of models that do not require ASR
- Looked at local work taking inspiration from humans

• Still many many unsolved core machine learning problems in unsupervised and low-resource speech processing

- Still many many unsolved core machine learning problems in unsupervised and low-resource speech processing
- Building speech search systems for (South) African languages

- Still many many unsolved core machine learning problems in unsupervised and low-resource speech processing
- Building speech search systems for (South) African languages
- Can some of these approaches be used in other machine learning domains? E.g. can vision tell us something about speech?

- Still many many unsolved core machine learning problems in unsupervised and low-resource speech processing
- Building speech search systems for (South) African languages
- Can some of these approaches be used in other machine learning domains? E.g. can vision tell us something about speech?
- What can we learn about language acquisition in humans?

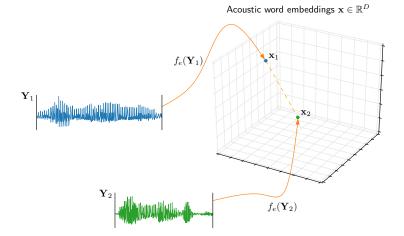
- Still many many unsolved core machine learning problems in unsupervised and low-resource speech processing
- Building speech search systems for (South) African languages
- Can some of these approaches be used in other machine learning domains? E.g. can vision tell us something about speech?
- What can we learn about language acquisition in humans?
- Language acquisition in robots

- Still many many unsolved core machine learning problems in unsupervised and low-resource speech processing
- Building speech search systems for (South) African languages
- Can some of these approaches be used in other machine learning domains? E.g. can vision tell us something about speech?
- What can we learn about language acquisition in humans?
- Language acquisition in robots
- Main take-away: Look at machine learning problems from different perspectives and angles

http://www.kamperh.com/ https://github.com/kamperh

Backup slides

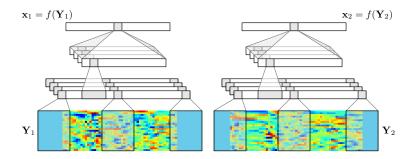
Acoustic word embeddings (AWê)



[Levin et al., ASRU'13]

Word similarity Siamese CNN

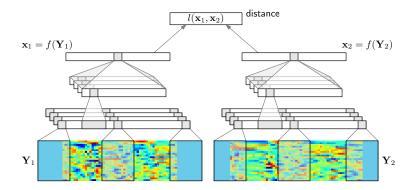
Use idea of Siamese networks [Bromley et al., PatRec'93]



[Kamper et al., ICASSP'15]

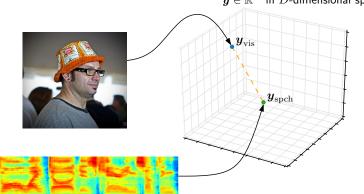
Word similarity Siamese CNN

Use idea of Siamese networks [Bromley et al., PatRec'93]



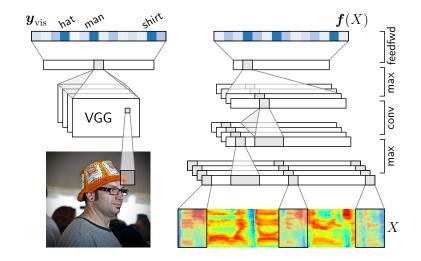
[Kamper et al., ICASSP'15]

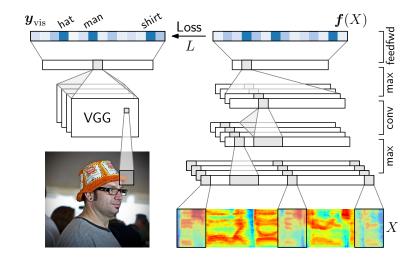
Retrieval in common (semantic) space

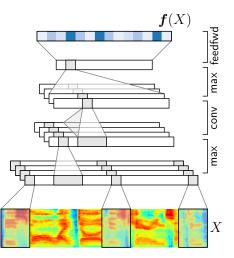


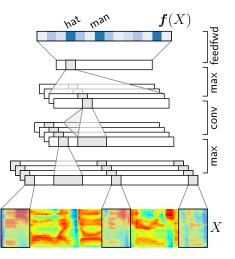
 $oldsymbol{y} \in \mathbb{R}^{D}$ in D-dimensional space

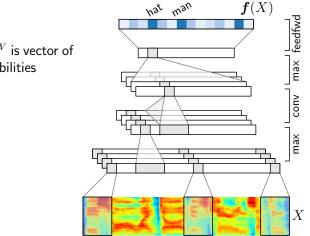
[Harwath et al., NIPS'16]











 $\boldsymbol{f}(X) \in \mathbb{R}^W$ is vector of word probabilities

 $\boldsymbol{f}(X) \in \mathbb{R}^W$ is vector of word probabilities

I.e., a spoken bag-of-words (BoW) classifier

