Optimisation of acoustic models for a target accent using decision-tree state clustering

PRASA 2012

Herman Kamper and Thomas Niesler

Digital Signal Processing Group
Department of Electrical and Electronic Engineering
Stellenbosch University

UNIVERSITEIT.STELLENBOSCH.UNIVERSITY
jou kennisvennoot • your knowledge partner

Introduction

Five major accents of South African English:

- How can we model the different accents for speech recognition?
- AST databases: approximately 6 hours of speech in each accent
- Multi-accent acoustic modelling allows selective sharing across accents
- This approach guarantees overall likelihood improvement over all accents, but not per-accent improvements
- How do we obtain best acoustic model set for particular accent, but still incorporate useful data from other accents?

- How can we model the different accents for speech recognition?
- AST databases: approximately 6 hours of speech in each accent
- Multi-accent acoustic modelling allows selective sharing across accents
- This approach guarantees overall likelihood improvement over all accents, but not per-accent improvements
- How do we obtain best acoustic model set for particular accent, but still incorporate useful data from other accents?

- How can we model the different accents for speech recognition?
- AST databases: approximately 6 hours of speech in each accent
- Multi-accent acoustic modelling allows selective sharing across accents
- This approach guarantees overall likelihood improvement over all accents, but not per-accent improvements
- How do we obtain best acoustic model set for particular accent, but still incorporate useful data from other accents?

- How can we model the different accents for speech recognition?
- AST databases: approximately 6 hours of speech in each accent
- Multi-accent acoustic modelling allows selective sharing across accents
- This approach guarantees overall likelihood improvement over all accents, but not per-accent improvements
- How do we obtain best acoustic model set for particular accent, but still incorporate useful data from other accents?

- How can we model the different accents for speech recognition?
- AST databases: approximately 6 hours of speech in each accent
- Multi-accent acoustic modelling allows selective sharing across accents
- This approach guarantees overall likelihood improvement over all accents, but not per-accent improvements
- How do we obtain best acoustic model set for particular accent, but still incorporate useful data from other accents?

Acoustic modelling

Acoustic modelling of context-dependent phones

- Use hidden Markov models (HMMs)
- Acoustic modelling of triphones: [t]-[iy]+[n]
- Problems:
 - Not all triphones occur in the training data
 - Not enough data for some triphones which do occur
- Want to determine clusters of similar triphones

Acoustic modelling

Acoustic modelling of context-dependent phones

- Use hidden Markov models (HMMs)
- Acoustic modelling of **triphones**: [t]-[iy]+[n]
- Problems:
 - Not all triphones occur in the training data
 - Not enough data for some triphones which do occur
- Want to determine clusters of similar triphones

Solution

Multi-accent acoustic modelling

Traditional modelling approaches

Accent-specific models

Traditional modelling approaches

Accent-specific models

Accent-independent models

Traditional modelling approaches

Phone recognition accuracy (%)

Approach	AE	BE	CE	EE	IE	Average
Accent-specific	64.80	56.77	64.59	72.97	64.27	64.68
Accent-independent	65.97	55.98	66.51	74.45	64.40	65.44
Multi-accent	66.20	56.56	66.31	73.94	64.60	65.50

Splitting criterion: $\Delta L_q = L(\mathbb{S}_1(q)) + L(\mathbb{S}_2(q)) - L(\mathbb{S})$

Splitting criterion: $\Delta L_q = L(\mathbb{S}_1(q)) + L(\mathbb{S}_2(q)) - L(\mathbb{S})$

Splitting criterion:
$$\Delta L_q = L(\mathbb{S}_1(q)) + L(\mathbb{S}_2(q)) - L(\mathbb{S})$$

The question is: what happens to $L_{AE}(\mathbb{S})$?

Splitting criterion:
$$\Delta L_q = L(\mathbb{S}_1(q)) + L(\mathbb{S}_2(q)) - L(\mathbb{S})$$

The question is: what happens to $L_t(\mathbb{S})$?

Proposal: replace $L(\mathbb{S})$ with $L_t(\mathbb{S})$ in the standard clustering procedure

$$L_t(\mathbb{S}) = \log \prod_{i \in \mathbb{F}} p(\mathbf{o}_f | \mathbb{S})$$
 (\mathbb{F}_t is frames generated by states \mathbb{S}_t)

$$\begin{split} L_t(\mathbb{S}) &= \log \prod_{f \in \mathbb{F}_t} p(\mathbf{o}_f | \mathbb{S}) & \text{$(\mathbb{F}_t$ is frames generated by states \mathbb{S}_t)} \\ &= \sum_{f \in \mathbb{F}_t} \log \left[\mathcal{N}(\mathbf{o}_f | \pmb{\mu}(\mathbb{S}), \pmb{\Sigma}(\mathbb{S})) \right] & \text{$(\textbf{Gaussian} observation PDFs)} \end{split}$$

$$\begin{split} L_t(\mathbb{S}) &= \log \prod_{f \in \mathbb{F}_t} p(\mathbf{o}_f | \mathbb{S}) & \left(\mathbb{F}_t \text{ is frames generated by states } \mathbb{S}_t \right) \\ &= \sum_{f \in \mathbb{F}_t} \log \left[\mathcal{N}(\mathbf{o}_f | \pmb{\mu}(\mathbb{S}), \pmb{\Sigma}(\mathbb{S})) \right] & \left(\mathbf{Gaussian} \text{ observation PDFs} \right) \\ &= -\frac{1}{2} N_t \left\{ \log[(2\pi)^n | \pmb{\Sigma}(\mathbb{S})|] \right\} - \frac{1}{2} n(N_x + N_t) \\ &+ \frac{1}{2} \mathrm{tr} \left\{ \pmb{\Sigma}^{-1}(\mathbb{S}) N_x \left[\pmb{\Sigma}(\mathbb{S}_x) + (\pmb{\mu}(\mathbb{S}_x) - \pmb{\mu}(\mathbb{S})) (\pmb{\mu}(\mathbb{S}_x) - \pmb{\mu}(\mathbb{S}))^\mathrm{T} \right] \right\} \end{split}$$

Proposal: replace $L(\mathbb{S})$ with $L_t(\mathbb{S})$ in the standard clustering procedure But can we calculate $L_t(\mathbb{S})$?

$$\begin{split} L_t(\mathbb{S}) &= \log \prod_{f \in \mathbb{F}_t} p(\mathbf{o}_f | \mathbb{S}) & \left(\mathbb{F}_t \text{ is frames generated by states } \mathbb{S}_t \right) \\ &= \sum_{f \in \mathbb{F}_t} \log \left[\mathcal{N}(\mathbf{o}_f | \pmb{\mu}(\mathbb{S}), \pmb{\Sigma}(\mathbb{S})) \right] & \left(\mathbf{Gaussian} \text{ observation PDFs} \right) \\ &= -\frac{1}{2} N_t \left\{ \log[(2\pi)^n | \pmb{\Sigma}(\mathbb{S})|] \right\} - \frac{1}{2} n(N_x + N_t) \\ &\quad + \frac{1}{2} \mathrm{tr} \left\{ \pmb{\Sigma}^{-1}(\mathbb{S}) N_x \left[\pmb{\Sigma}(\mathbb{S}_x) + (\pmb{\mu}(\mathbb{S}_x) - \pmb{\mu}(\mathbb{S})) (\pmb{\mu}(\mathbb{S}_x) - \pmb{\mu}(\mathbb{S}))^\mathrm{T} \right] \right\} \end{split}$$

Since $\mu(\mathbb{S})$, $\mu(\mathbb{S}_x)$, $\Sigma(\mathbb{S})$ and $\Sigma(\mathbb{S}_x)$ are **calculable** from only the the means and covariance matrices of the states in the corresponding clusters, the calculation of $L_t(\mathbb{S})$ for each possible cluster split is **computationally tractable**.

So let us take $L_t(\mathbb{S})$ as splitting criterion in our decision-trees

So let us take $L_t(\mathbb{S})$ as splitting criterion in our decision-trees ... problems?

So let us take $L_t(S)$ as splitting criterion in our decision-trees . . . problems?

Targeted decision-tree state clustering

Phone recognition accuracy (%)

Approach	AE	BE	CE	EE	IE	Average
Accent-specific	64.80	56.77	64.59	72.97	64.27	64.68
Accent-independent	65.97	55.98	66.51	74.45	64.40	65.44
Multi-accent	66.20	56.56	66.31	73.94	64.60	65.50
Targeted multi-accent	64.60	55.17	64.11	72.65	64.44	64.21

Weighted targeted decision-tree state clustering

Let us weigh the likelihoods: $L_w(\mathbb{S}) = w_t L_t(\mathbb{S}) + w_x L_x(\mathbb{S})$

Weighted targeted decision-tree state clustering

Let us weigh the likelihoods: $L_w(\mathbb{S}) = w_t L_t(\mathbb{S}) + w_x L_x(\mathbb{S})$

Phone recognition accuracy (%)

Approach	AE	BE	CE	EE	IE	Average
Accent-specific	64.80	56.77	64.59	72.97	64.27	64.68
Accent-independent	65.97	55.98	66.51	74.45	64.40	65.44
Multi-accent	66.20	56.56	66.31	73.94	64.60	65.50
Targeted multi-accent	64.60	55.17	64.11	72.65	64.44	64.21
Weighted targeted	66.74	56.56	66.13	73.94	64.96	65.65
Weight w_t used above	0.51	0.5	0.53	0.5	0.54	

- Extended the standard decision-tree state clustering algorithm to allow explicit optimisation on a target accent
- Showed that when likelihood is calculated only on target accent, performance deteriorates (possibly due to high separation of target)
- Showed that when some weight is also assigned to non-target accents (giving control over separation) very small improvements can be obtained
- Criticism: clustering early on in model training process, no guarantees
- Future: compare/incorporate to/in classic adaptation approaches

- Extended the standard decision-tree state clustering algorithm to allow explicit optimisation on a target accent
- Showed that when likelihood is calculated only on target accent,
 performance deteriorates (possibly due to high separation of target)
- Showed that when some weight is also assigned to non-target accents (giving control over separation) very small improvements can be obtained
- Criticism: clustering early on in model training process, no guarantees
- Future: compare/incorporate to/in classic adaptation approaches

- Extended the standard decision-tree state clustering algorithm to allow explicit optimisation on a target accent
- Showed that when likelihood is calculated only on target accent,
 performance deteriorates (possibly due to high separation of target)
- Showed that when some weight is also assigned to non-target accents (giving control over separation) very small improvements can be obtained
- Criticism: clustering early on in model training process, no guarantees
- Future: compare/incorporate to/in classic adaptation approaches

- Extended the standard decision-tree state clustering algorithm to allow explicit optimisation on a target accent
- Showed that when likelihood is calculated only on target accent,
 performance deteriorates (possibly due to high separation of target)
- Showed that when some weight is also assigned to non-target accents (giving control over separation) very small improvements can be obtained
- Criticism: clustering early on in model training process, no guarantees
- Future: compare/incorporate to/in classic adaptation approaches

- Extended the standard decision-tree state clustering algorithm to allow explicit optimisation on a target accent
- Showed that when likelihood is calculated only on target accent,
 performance deteriorates (possibly due to high separation of target)
- Showed that when some weight is also assigned to non-target accents (giving control over separation) very small improvements can be obtained
- Criticism: clustering early on in model training process, no guarantees
- Future: compare/incorporate to/in classic adaptation approaches