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Introduction

Five major accents of South African English:

Afrikaans English (AE)

\16% Other
Indian South African English (IE)
Black South White South African English (EE)

African English
(BE)

Cape Flats English (CE)
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Modelling accents

@ How can we model the different accents for speech recognition?
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Modelling accents

@ How can we model the different accents for speech recognition?
o AST databases: approximately 6 hours of speech in each accent
@ Multi-accent acoustic modelling allows selective sharing across accents

@ This approach guarantees overall likelihood improvement over all accents,
but not per-accent improvements

@ How do we obtain best acoustic model set for particular accent, but still
incorporate useful data from other accents?
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Acoustic modelling

Acoustic modelling of context-dependent phones
@ Use hidden Markov models (HMMs)
@ Acoustic modelling of triphones: [t]—[iy]+[n]
@ Problems:

Not all triphones occur in the training data

Not enough data for some triphones which do occur

o Want to determine clusters of similar triphones
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Acoustic modelling of context-dependent phones
@ Use hidden Markov models (HMMs)
@ Acoustic modelling of triphones: [t]—[iy]+[n]
@ Problems:

Not all triphones occur in the training data

Not enough data for some triphones which do occur

o Want to determine clusters of similar triphones

Solution
Use decision-tree state clustering
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Decision-tree state clustering

x—[iy]+x

(state )
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Decision-tree state clustering

x—[iy]+x

(state )

Left voiced?

Left vowel? Right plosive?
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Decision-tree state clustering

x—[iy]+x

(state )

Left voiced?

Left vowel?
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Decision-tree state clustering

x—[iy]+x

(state )

Left voiced?

Right vowel? Afrikaans English?
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Multi-accent acoustic modelling
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Traditional modelling approaches

Accent-specific models
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Traditional modelling approaches

Accent-specific models Accent-independent models
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Traditional modelling approaches

Phone recognition accuracy (%)

Approach | AE | BE | CE | EE | IE | Average
Accent-specific 64.80 | 56.77 | 64.59 72.97 64.27 64.68
Accent-independent | 65.97 55.98 66.51 74.45 64.40 65.44
Multi-accent 66.20 | 56.56 | 66.31 | 73.94 | 64.60 65.50
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Problem with multi-accent state clustering

n(S), (), L(S)
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Targeted multi-accent acoustic modelling

Proposal: replace L(S) with L.(S) in the standard clustering procedure
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But can we calculate L.(S)?

L:(S) = log H p(o¢[S) (F; is frames generated by states S;)
feF,
= Z log [NV (of|p(S), 2(S))] (Gaussian observation PDFs)
fer,

_ _%Nt {log[(2m)"| (S >|1}— n(N; + Ni)

+ 5t (SN, [S(52) + ((5) — w(S)) (u(S2) — p(S)"])
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Targeted multi-accent acoustic modelling

Proposal: replace L(S) with L.(S) in the standard clustering procedure

But can we calculate L.(S)?

L:(S) = log H p(o¢[S) (F; is frames generated by states S;)
feF,
= Z log [NV (of|p(S), 2(S))] (Gaussian observation PDFs)
fer,

= 2V, {logl(2m)"[SS)[[} ~ (N, + Ny
S (SO, [2<sx> T ((S4) — () (a(S.) — ()]}
Since u(S), p(S;), X(S) and X(S,) are calculable from only the the means and

covariance matrices of the states in the corresponding clusters, the calculation of
L(S) for each possible cluster split is computationally tractable.
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Targeted multi-accent acoustic modelling

So let us take L(S) as splitting criterion in our decision-trees
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Targeted multi-accent acoustic modelling

So let us take L:(S) as splitting criterion in our decision-trees ... problems?

w(S), B(S), Li(S)

S=S,US; s € $4? (is the accent ¢?)

1(St), B(Sy), Le(St) Leaf node
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Targeted decision-tree state clustering

Phone recognition accuracy (%)

Approach ‘ AE ‘ BE ‘ CE ‘ EE ‘ IE ‘ Average
Accent-specific 64.80 | 56.77 | 64.59 | 7297 | 64.27 64.68
Accent-independent 65.97 | 55.98 | 66.51 | 74.45 | 64.40 65.44
Multi-accent 66.20 | 56.56 | 66.31 | 73.94 | 64.60 65.50
Targeted multi-accent | 64.60 | 55.17 | 64.11 | 72.65 | 64.44 64.21
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Weighted targeted decision-tree state clustering

Let us weigh the likelihoods: L,(S) = w;L(S) + wy Ly (S) )
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Weighted targeted decision-tree state clustering

Let us weigh the likelihoods: Ly, (S) = wyLi(S) + wy Ly (S) J
Phone recognition accuracy (%)

Approach | AE | BE | CE | EE | IE | Average |
Accent-specific 64.80 | 56.77 | 64.59 | 72.97 | 64.27 64.68
Accent-independent 65.97 | 55.98 | 66.51 | 74.45 | 64.40 65.44
Multi-accent 66.20 | 56.56 | 66.31 | 73.94 | 64.60 65.50
Targeted multi-accent | 64.60 | 55.17 | 64.11 | 72.65 | 64.44 64.21
Weighted targeted 66.74 | 56.56 | 66.13 | 73.94 | 64.96 65.65
Weight w; used above | 0.51 0.5 0.53 0.5 0.54
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Summary and conclusions

@ Extended the standard decision-tree state clustering algorithm to allow
explicit optimisation on a target accent
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Showed that when some weight is also assigned to non-target accents
(giving control over separation) very small improvements can be obtained

Criticism: clustering early on in model training process, no guarantees
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Summary and conclusions

Extended the standard decision-tree state clustering algorithm to allow
explicit optimisation on a target accent

Showed that when likelihood is calculated only on target accent,
performance deteriorates (possibly due to high separation of target)

Showed that when some weight is also assigned to non-target accents
(giving control over separation) very small improvements can be obtained

Criticism: clustering early on in model training process, no guarantees

e Future: compare/incorporate to/in classic adaptation approaches
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