Resource development and experiments in automatic South African broadcast news transcription

SLTU 2012, Cape Town, South Africa

Herman Kamper¹, Febe de Wet^{1,2}, Thomas Hain³, Thomas Niesler¹

¹Department of Electrical and Electronic Engineering, Stellenbosch University, South Africa ²Human Language Technology Competency Area, CSIR Meraka Institute, Pretoria, South Africa ³Department of Computer Science, University of Sheffield, United Kingdom

Introduction

Broadcast news domain:

- Provides a ready source of speech audio data
- Variety of speech styles and quality: careful newsreader to noisy spontaneous
- Useful as components for subsequent speech technologies

Introduction

Broadcast news domain:

- Provides a ready source of speech audio data
- Variety of speech styles and quality: careful newsreader to noisy spontaneous
- Useful as components for subsequent speech technologies

South African (English) broadcast news:

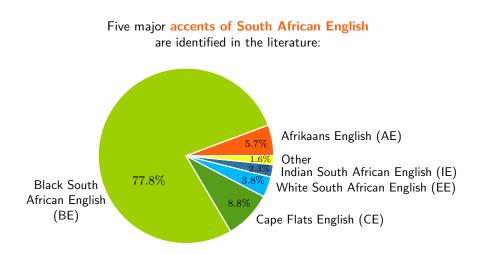
- Several prevalent English accents
- South African English is under-resourced variety of English

Introduction

Broadcast news domain:

- Provides a ready source of speech audio data
- Variety of speech styles and quality: careful newsreader to noisy spontaneous
- Useful as components for subsequent speech technologies

South African (English) broadcast news:


- Several prevalent English accents
- South African English is under-resourced variety of English

Motivation

Report on **baseline results** of a straight-forward system:

- Use resources collected at Stellenbosch University (2000 present)
- Aim is to use baseline for comparative/interesting further studies

Accents of English in South Africa

South African broadcast news data

20 hours SAFM broadcasts from 1996 to 2006:

- RD: Newsreader speech, prepared 27 speakers, 12.9 hours (BE, EE, IE)
- SI: Studio interview speech, fairly spont. 61 speakers, 0.6 hours
- NST: Non-studio telephone speech, spont. 262 speakers, 2.07 hours
- NS: Non-studio wideband speech, noisy 208 speakers, 1.54 hours

Accent annotated for each sentence-level segment. Test set similar in composition to training set ${\sim}2.7$ hours.

Speech recognition problem $\hat{W} = \arg \max_{W} P(W|\mathbf{X}) = \arg \max_{W} p(\mathbf{X}|W) P(W)$

Speech recognition problem $\hat{W} = \underset{W}{\arg \max} P(W|\mathbf{X}) = \underset{W}{\arg \max} p(\mathbf{X}|W) P(W)$

Models required

() Language model for P(W) - 109M word corpus of newspaper text

Speech recognition problem

$$\hat{W} = \arg\max_{W} P(W|\mathbf{X}) = \arg\max_{W} p(\mathbf{X}|W) P(W)$$

Models required

- **(**) Language model for P(W) 109M word corpus of newspaper text
- **2** Pronunciation dictionary for p(X|W) 60k word pronunciation dictionary

Speech recognition problem

$$\hat{W} = \underset{W}{\operatorname{arg\,max}} P(W|\mathbf{X}) = \underset{W}{\operatorname{arg\,max}} p(\mathbf{X}|W) P(W)$$

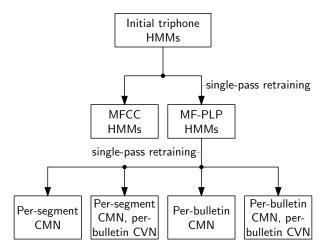
Models required

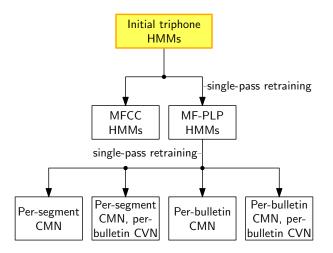
- **(**) Language model for P(W) 109M word corpus of newspaper text
- **2** Pronunciation dictionary for p(X|W) 60k word pronunciation dictionary
- Solution Acoustic model for p(X|W) 20h SABN corpus (previous slide)

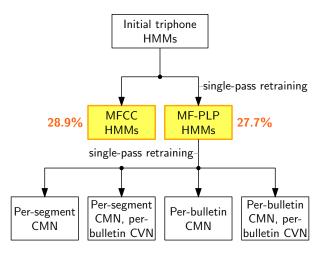
Language modelling

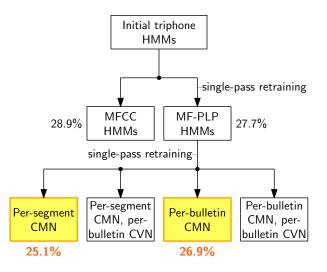
- 109M word corpus from **South African newspapers**, collected 2000 2005: The Financial Mail, Business Day, The Sunday Times, The Times, Sunday World, The Sowetan, The Herald, The Algoa Sun and The Daily Dispatch
- SRILM toolkit used to train trigram language models on above text as well as on the transcriptions of acoustic training set (185k words)
- Also considered interpolation of the two language models

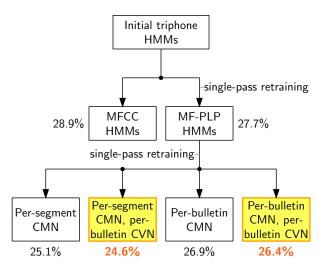
Language modelling

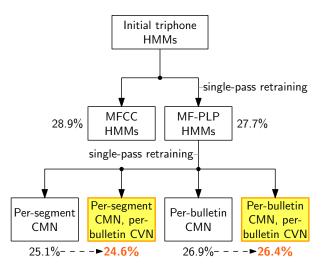

- 109M word corpus from **South African newspapers**, collected 2000 2005: The Financial Mail, Business Day, The Sunday Times, The Times, Sunday World, The Sowetan, The Herald, The Algoa Sun and The Daily Dispatch
- SRILM toolkit used to train trigram language models on above text as well as on the transcriptions of acoustic training set (185k words)
- Also considered interpolation of the two language models

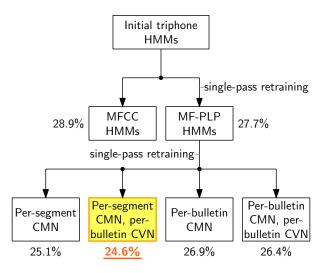



Language model	Perplexity	
Trained on 109M newspaper corpus	162.9	
Trained on acoustic training set	328.9	
Interpolation of the above two	139.9	


Pronunciation dictionary


- Pronunciation dictionaries developed by a phonetic expert
- Reflect typical EE pronunciation
- Phone set: 45 **ARPABET** phones
- Training pronunciation dictionary: 15k words
- Recognition pronunciation dictionary: 60k words
- Average number of pronunciations per word: 1.25
- \bullet Out-of-vocabulary rate on test set: 1.02%





Experimental results

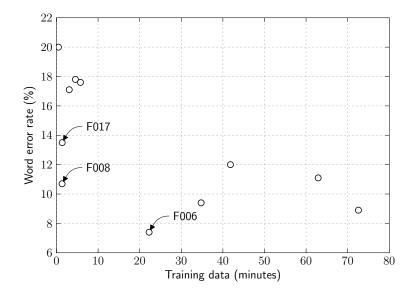
Final system

- Acoustic model set: 2624 states
- Features: mel-frequency perceptual linear prediction (MF-PLP)
- Normalisation: per-segment CMN, per-bulletin CVN

Experimental results

Final system

- Acoustic model set: 2624 states
- Features: mel-frequency perceptual linear prediction (MF-PLP)
- Normalisation: per-segment CMN, per-bulletin CVN


Evaluation

- Used the first-best output from HTK HDecode decoder
- Measured WERs separately for each accent and channel condition

System performance

Accent	RD	SI	NST	NS	Overall
AE	-	-	60.7	67.0	63.3
BE	13.7	19.6	64.3	56.9	29.4
CE	-	-	61.7	-	61.7
EE	14.1	-	54.1	41.6	17.2
IE	12.7	-	59.2	-	16.6
UKE	-	17.7	22.7	32.2	23.8
USE	-	39.3	-	50.5	48.0
Other	-	-	63.0	66.7	65.3
Overall	13.6	19.5	57.3	52.0	24.6

System performance

MP3 audio compression

MP3 bit-rate	RD	SI	NST	NS	Overall
128 kbps	13.6	18.9	57.0	51.9	24.6
64 kbps	13.4	18.8	57.8	52.3	24.6
32 kbps	14.3	20.8	58.7	50.7	25.3

Summary and conclusions

Summary:

- Described compilation of resources and subsequent language, pronunciation and acoustic modelling
- Compared MFCC and MF-PLP parametrisation
- Normalisation: compared CMN and CVN
- Considered system performance on MP3 compressed audio

Summary and conclusions

Summary:

- Described compilation of resources and subsequent language, pronunciation and acoustic modelling
- Compared MFCC and MF-PLP parametrisation
- Normalisation: compared CMN and CVN
- Considered system performance on MP3 compressed audio

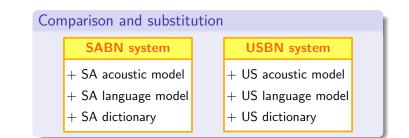
Main findings

- Final system: MF-PLP, per-segment CMN, per-bulletin CVN
- WER of 24.6%, poor performance on spontaneous and telephone speech
- MP3 compression: system maintains performance except at very low bit-rates

Improvements to current system:

- Presence of several accents: pronunciation and acoustic modelling
- Single pronunciation dictionary is currently employed

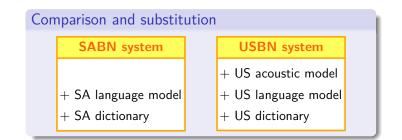
Improvements to current system:


- Presence of several accents: pronunciation and acoustic modelling
- Single pronunciation dictionary is currently employed

- \bullet Contrast performance with similarly trained UK and US systems
- Identify how resources from well-resourced UK and US English varieties can be used in the **poorly-resourced** SA environment

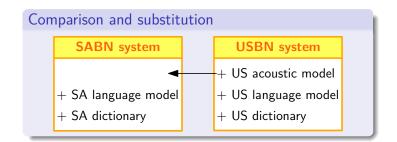
Improvements to current system:

- Presence of several accents: pronunciation and acoustic modelling
- Single pronunciation dictionary is currently employed


- \bullet Contrast performance with similarly trained UK and US systems
- Identify how resources from well-resourced UK and US English varieties can be used in the **poorly-resourced** SA environment

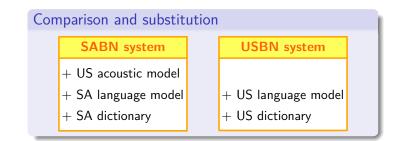
Improvements to current system:

- Presence of several accents: pronunciation and acoustic modelling
- Single pronunciation dictionary is currently employed


- \bullet Contrast performance with similarly trained UK and US systems
- Identify how resources from well-resourced UK and US English varieties can be used in the **poorly-resourced** SA environment

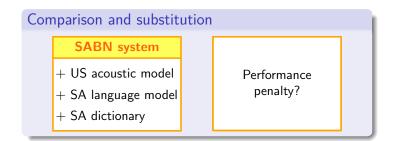
Improvements to current system:

- Presence of several accents: pronunciation and acoustic modelling
- Single pronunciation dictionary is currently employed


- \bullet Contrast performance with similarly trained UK and US systems
- Identify how resources from well-resourced UK and US English varieties can be used in the **poorly-resourced** SA environment

Improvements to current system:

- Presence of several accents: pronunciation and acoustic modelling
- Single pronunciation dictionary is currently employed


- \bullet Contrast performance with similarly trained UK and US systems
- Identify how resources from well-resourced UK and US English varieties can be used in the **poorly-resourced** SA environment

Improvements to current system:

- Presence of several accents: pronunciation and acoustic modelling
- Single pronunciation dictionary is currently employed

- \bullet Contrast performance with similarly trained UK and US systems
- Identify how resources from well-resourced UK and US English varieties can be used in the **poorly-resourced** SA environment

