
Query-by-Example Search
with Discriminative Neural Acoustic Word Embeddings

Shane Settle1, Keith Levin2, Herman Kamper1, Karen Livescu1

1TTI-Chicago, USA 2Johns Hopkins University, USA

Introduction

• Query-by-example (QbE) speech search is
the task of searching for a spoken query
term in a collection of speech recordings

• This task arises naturally when the search
terms may be out-of-vocabulary, in
hands-free settings, or in low-resource
settings

• Prior work largely based on DTW (e.g. [1])
• Some recent work has explored using
fixed-dimensional embeddings to
represent both query and database
segments, and nearest-neighbor search to
determine putative matches(e.g. [2])

• This work: A neural embedding model for
representing query and database
segments, learned from limited labeled
data using a contrastive loss

• We improve over past techniques which
rely on DTW [1] and
template-embedding [2] based methods
for segment comparison

Experimental Setup

Training the Neural Acoustic Word Embed-
ding (NAWE) model [3, 4, 5]:
• Standard train(10k)/dev(11k) partitioning
of Switchboard conversational corpus
from prior work (dev used to tune based
on the word discrimination task [6])

• Acoustic features used are 39-dimensional
MFCCS+∆+∆∆s

Evaluating on the QbE task [2, 7]:
• 37-hour set from which query terms are
drawn

• 48-hour development search collection to
tune hyperparameters

• 433-hour evaluation search collection.
Evaluation metrics:
• figure-of-merit (FOM): recall averaged over
the ten operating points at which the false
alarm rate per hour of search audio is
equal to 1, 2, . . . , 10

• oracular term weighted value (OTWV):
query-specific weighted difference
between recall and false alarm rate

• precision at 10 (P@10): the fraction of the
top ten results which are correct matches
to the query

NAWE-based QbE
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Permute Bit Sequences from Query and Search Collection

Sort Sj, and find B neighbors to qj with binary search

Hash embeddings, x, into bit sequences of length b using locality sensitive hashing (LSH)

Compute approximate cosine distances and rank
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EVALUATION

Hamming DistanceBit Sequences

Approximate Cosine Distance

NAWE Training Objective

LSTM Model and Triplet Siamese Training Setup

Evaluation Results

System Median Example Best Example Query Time (s)
FOM OTWV P@10 FOM OTWV P@10

DTW-based [1] 6.7 2.7 44.0 20.7 10.4 84.4 24.7
Template-based [2] 24.5 14.4 34.5 46.2 26.6 87.4 0.078

Ours 43.3 22.4 60.2 65.4 43.3 95.1 0.38
Table: Comparison of QbE system performance on the evaluation set. Hyperparameters are set to b � 1024, P � 16, B � 2, 000.

Queries and Top-Hits

Figure: Embeddings of queries and their top hits, visualized using t-SNE. Queries are shown in large capital letters, while the top several hits for each query is shown in the same
color as the query. Random segments from the search collection and their associated transcriptions are shown in gray.

Running time vs Precision@10

Figure: Ours (solid) vs. S-RAILS [2] (dotted) on the development
search collection; connected points indicate a system with fixed
permutation number (P) and beamwidth (B) while signature length (b)
is varied from 128 to 2048.

Development Results and Observations

Median Example Best Example
FOM OTWV P@10 FOM OTWV P@10

vary b
128 62.1 37.4 42.1 81.7 60.8 83.8
256 67.2 42.6 48.6 83.0 65.4 84.9
512 68.2 44.8 52.6 83.6 65.9 84.9

1024 69.1 46.5 54.5 84.1 66.7 84.8
2048 70.4 48.3 54.5 85.0 66.8 86.0

vary P
4 48.8 33.2 45.2 75.2 59.0 83.0
8 60.9 41.0 50.3 80.3 63.8 85.0

16 69.1 46.5 54.5 84.1 66.7 84.8
vary B
1000 65.8 44.8 53.4 83.0 65.6 85.0
2000 69.1 46.5 54.5 84.1 66.7 84.8

10000 74.6 49.5 54.2 86.3 67.9 84.8
Table: Effect of varying signature length b, number of permutations P,
and beamwidth B on dev performance; when fixed, parameters are set
to b � 1024, P � 16, B � 2, 000.

• Increases in signature length and # of permutations yield
larger improvements in P@10 for our system than the
template-embedding system (S-RAILS)

• Performance benefits from increasing signature length
and number of permutations saturate later for our system

• When varying P, performance has not plateaued for
Median Example, continued exploration in this direction
may further improve results

• Increasing beamwidth does not efficiently increase P@10
performance, but helps to improve recall, as seen in the
FOM score

Conclusion

• NAWEs give relative improvement over
template-embeddings (S-RAILS) of >55% across all
metrics for Median Example results

• Directions for future work:
• Explore limits of the approach as the amount of training data is
varied

• Train a QbE system end-to-end
• Joint models for both QbE and text-based spoken term detection
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