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Learning Dynamics of Linear Denoising Autoencoders
Arnu Pretorius Steve Kroon Herman Kamper Stellenbosch University, South Africa

Contributions

We study the learning dynamics of linear denoising autoencoders (DAEs)[1]. Inspired by [2], we
derived the learning trajectories of the noise regularised product of network weights during
training.
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Our specific contributions:

• Derived learning dynamics for linear DAEs and weight decayed autoencoders (WDAEs).

• Illuminated differences between the dynamics of DAEs and WDAEs: DAEs seem to exhibit
faster training dynamics, even though WDAEs can have larger learning rates.

• Showed that the theory matches real-world training reasonably well.

• Verified that nonlinear autoencoders have qualitatively similar learning dynamics.

How noise impacts training
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Figure 1: Hyperbolic learning dynamics, loss surface and gradient descent paths for linear denoising autoencoders. Top: Hyperbolic

learning dynamics for each simulated run (dashed orange lines) together with the theoretically predicted learning dynamics (solid green

lines). The red line in each plot indicates the final value of the resulting fixed point solution w∗. Bottom: The loss surface corresponding

to the loss `λ = λ
2 (1 − w2w1)2 + ε

2(w2w1)2 for λ = 1, as well as the gradient descent paths (dashed orange lines) for randomly initialised

weights. The cyan hyperbolas represent the global minimum loss manifold that corresponds to all possible combinations of w2 and w1

that minimise `λ. Left: ε = 0, w∗ = 1. Middle: ε = 1, w∗ = 0.5. Right: ε = 5, w∗ = 1/6.

• Fixed point: w∗ = λ
λ+ε

Noise vs. weight decay

• Equivalent regularisation: γ = λε
λ+ε
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Figure 2: Theoretically predicted learning dynamics for noise compared to weight decay for linear autoencoders. Top: Noise dynamics

(green), darker line colours correspond to larger amounts of added noise. Bottom: Weight decay dynamics (orange), darker line colours

correspond to larger amounts of regularisation. Left to right: Eigenvalues λ = 2.5, 1 and 0.5 associated with high to low variance.

• Ratio of the optimal learning rate for DAEs vs. WDAEs: R = 2λ+γ
2λ+3ε
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Figure 3: Learning dynamics for optimal discrete time learning rates (λ = 1). Left: Dynamics of DAEs (green) vs. WDAEs (orange),

where darker line colours correspond to larger amounts noise or weigh decay. Middle: Optimal learning rate as a function of noise ε for

DAEs, and for WDAEs using an equivalent amount of regularisation γ = λε/(λ+ ε). Right: Difference in mapping over time.
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Figure 4: The effect of noise versus weight decay on the norm of the weights during learning. Left: Two-dimensional loss surface

`λ = λ
2 (1 − w2w1)2 + ε

2(w2w1)2 + γ
2 (w2

2 + w2
1). Gradient descent paths (orange/magenta dashed lines), minimum loss manifold (cyan

curves), saddle point (red star). Middle: Simulated learning dynamics. Right: Norm of the weights over time for each simulated run.

Top: Noise with λ = 1, ε = 0.1 and γ = 0. Bottom: Weight decay with λ = 1, ε = 0 and γ = λ(0.1)/(λ + 0.1) = 0.091. The magenta

line in each plot corresponds to a simulated run with small initialised weights.

Experimental results

0.0

0.2

0.4

0.6

0.8

1.0

w
2

⋅w
1

Weight decay

Theory (γ= 0)
Theory (γ= 0.5)
Actual (γ= 0)
Actual (γ= 0.5)

M
NI

ST

Noise

Theory (σ2 = 0)
Theory (σ2 = 0.5)
Actual (σ2 = 0)
Actual (σ2 = 0.5)

0 1000 2000 3000 4000 5000
t (epoch)

0.0

0.2

0.4

0.6

0.8

1.0

w
2

⋅w
1

0 1000 2000 3000 4000 5000
t (epoch)

CI
FA

R-
10

Figure 5: Learning dynamics for MNIST and CIFAR-10. Solid lines represent theoretical dynamics and ‘x’ markers simulated dynamics.

Left: Weight decay: AE (blue) vs. WDAE with γ = 0.5 (orange). Right: Noise: AE (blue) vs. DAE with σ2 = 0.5 (green). Top:

MNIST. Bottom: CIFAR-10.
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Figure 6: Learning dynamics for nonlinear networks using ReLU activation. AE (blue), WDAE (orange) and DAE (green). Left: MNIST

Right: CIFAR-10.
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