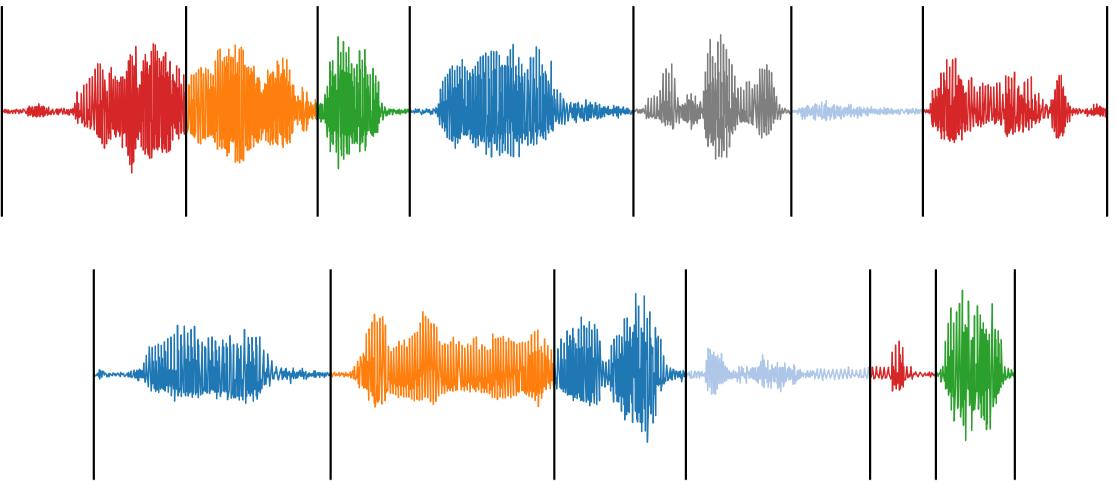


Introduction

Zero-resource speech processing aims to develop unsupervised methods that can learn directly from raw speech, without transcriptions, lexicons or LM text. We consider full-coverage **segmentation** and **clustering**:

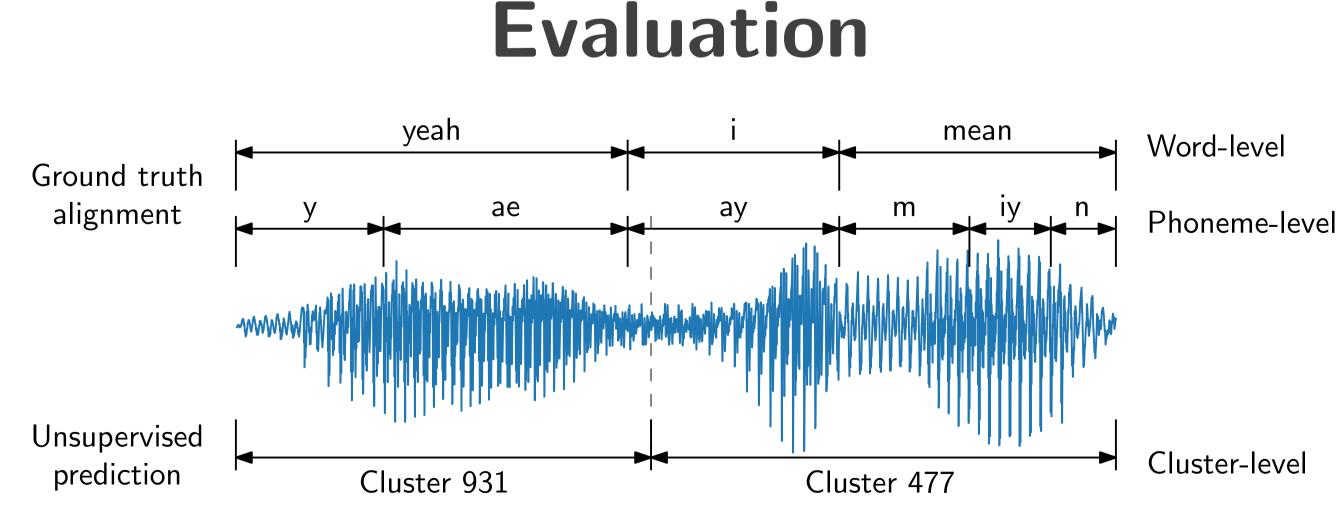


The Bayesian embedded segmental Gaussian mixture model (BES-GMM) was proposed before (Kamper et al., 2016). Here we develop a new model: *Em*bedded segmental K-means (ES-KMeans). It also relies on fixed-dimensional segmental representations, but uses hard clustering and segmentation rather than Bayesian inference as in BES-GMM. We study the effects of these hard assignments on **performance**, **speed** and **scalability**.

Data sets

We use the Zero Resource Speech Challenge (ZRSC) 2015 and 2017 data:

- **ZRSC'15:** English (5 h, 12 speakers), Xitsonga (2.5 h, 24 speakers)
- **ZRSC'17:** English (45 h, 69 spk), French (24 h, 28 spk), Mandarin (2.5 h, 12 spk), Surprise 1 (25 h, 30 spk), Surprise 2 (10 h, 24 spk)

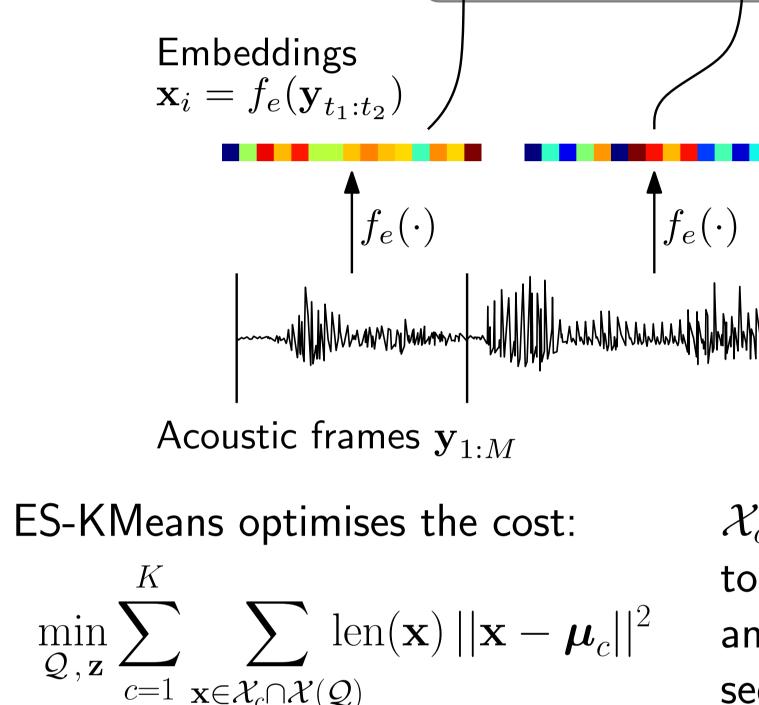


- Boundary, token, type F-score: Compare unsupervised segmentation to ground truth alignment.
- Normalised edit distance (NED): Map discovered tokens to phoneme sequence with max overlap and calculate edit distance between pairs.

An embedded segmental K-means model for unsupervised segmentation and clustering of speech

Herman Kamper¹, Karen Livescu², Sharon Goldwater³ ¹E&E Engineering, Stellenbosch University, ²TTI-Chicago, ³School of Informatics, University of Edinburgh

Embedded segmental K-means

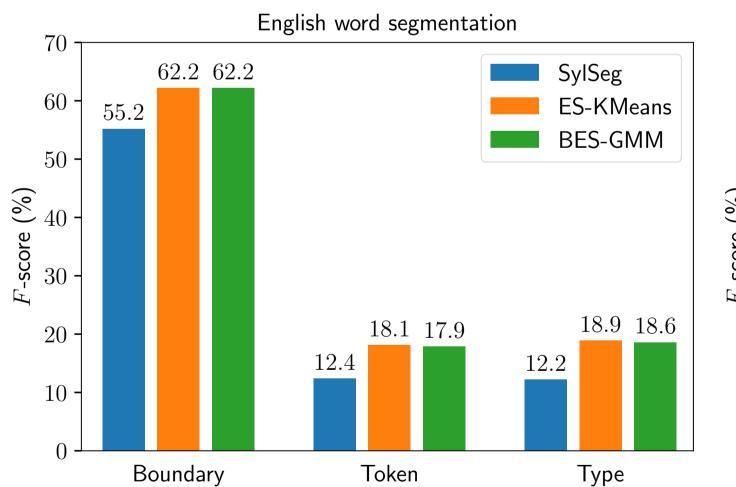


K-means

clustering

 $\mathcal{X}_c \cap \mathcal{X}(\mathcal{Q})$ are embeddings assigned to cluster c under segmentation Q, and $len(\mathbf{x})$ is the no. of frames in the sequence on which \mathbf{x} is calculated.

Comparison and analysis (ZRSC'15)



Runtime (sec) Model Xitsonga English SylSeg 20 100 ES-KMeans 193 44 **BES-GMM** 1052 196

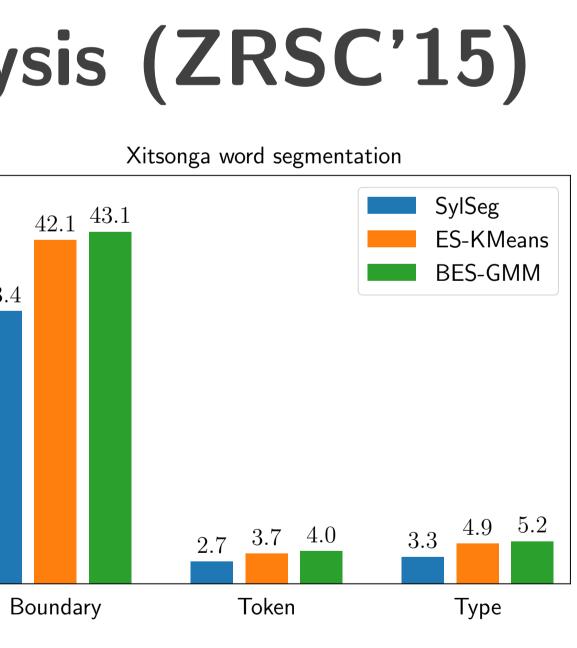
just just

20 -

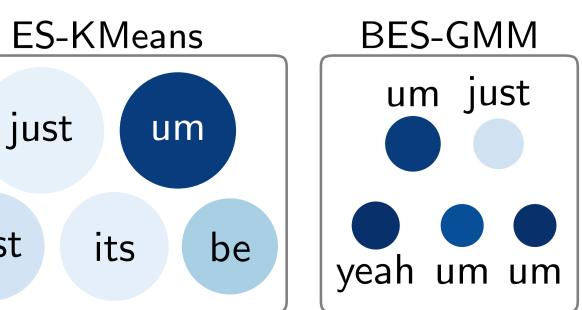
Cluster-leve

Word-level

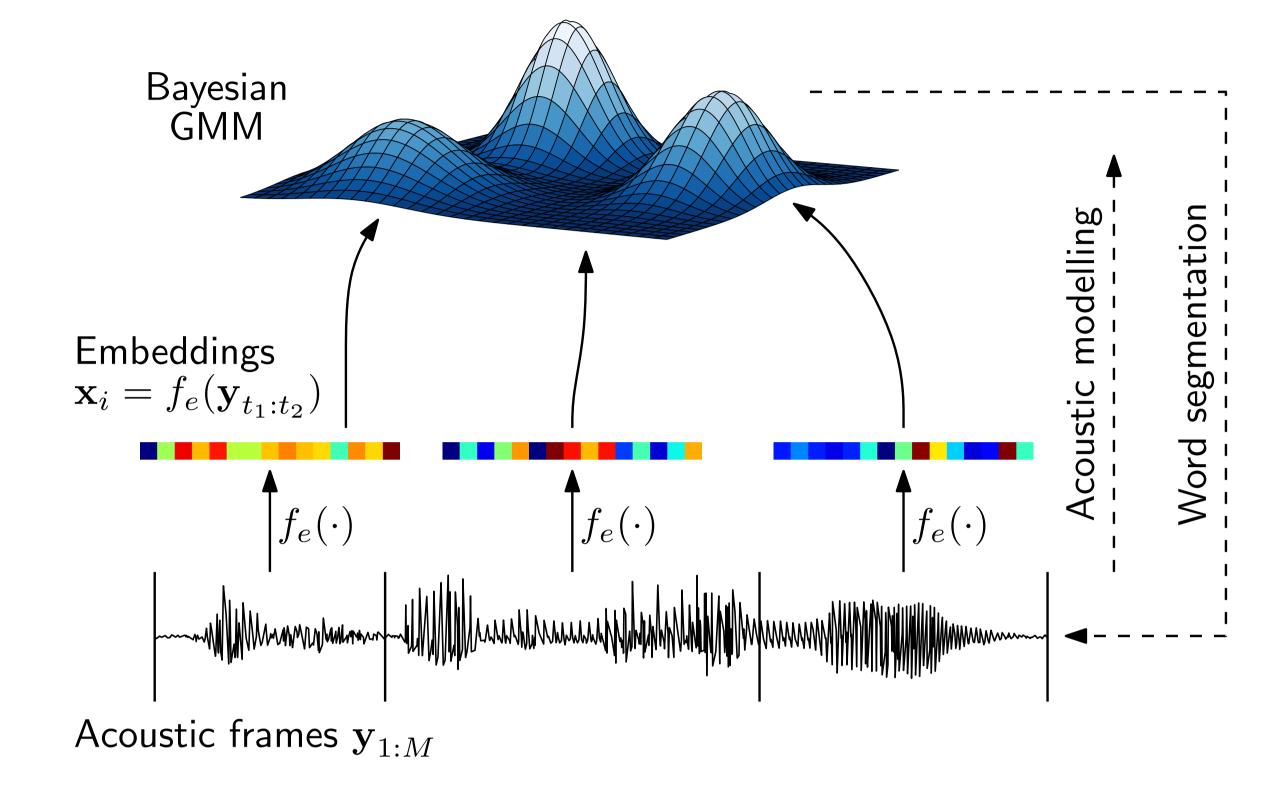
Right: Five biggest clusters for ES-KMeans and BES-GMM. Circle radii indicate size, shading gives purity. The cluster sizes for BES-GMM can be controlled using hyperparameters.



We use the ZRSC'15 data to compare to previous results. SylSeg is an heuristic approach developed by Räsänen et al. (2015).



Bayesian embedded segmental GMM



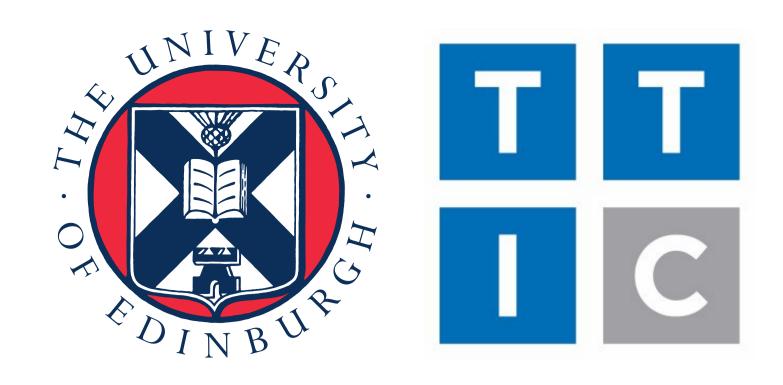
BES-GMM uses Gibbs sampling for joint segmentation and clustering. Downsampling is used as embedding function $f_e(\cdot)$ for ES-KMeans and BES-GMM. ES-KMeans results in the limit from BES-GMM when the variance $\rightarrow 0$.

Zero Resource Speech Challenge 2017

Language	Model	Coverage		F-score (%)		
			NED	Boundary	Token	Туре
English	JHU-PLP	7.9	33.9	5.7	0.5	1.2
	ES-KMeans	100	72.6	52.7	13.5	11.1
French	JHU-PLP	1.6	25.4	1.1	0.1	0.3
	ES-KMeans	97.2	67.3	39.6	3.7	4.2
Mandarin	JHU-PLP	2.9	30.7	1.8	0.1	0.2
	ES-KMeans	100	88.1	41.1	2.9	3.1
Surprise 1	JHU-PLP	3.0	30.5	2.3	0.2	0.6
	ES-KMeans	100	66.4	48.6	12.0	7.5
Surprise 2	JHU-PLP	5.9	30.8	2.0	0.1	0.2
	ES-KMeans	100	72.2	43.3	5.0	6.3

The JHU-PLP term discovery system aims for high-precision clusters (good NED), but does not cover all the data (low coverage, segmentation recall).

ES-KMeans performs slightly worse than BES-GMM, but is much faster. This allows it to be applied to corpora of reasonable size (ZRSC'17). In contrast to heuristic methods, ES-KMeans still has a clear objective function. Future work will focus on improving the acoustic word embedding method.



Conclusions

https://github.com/kamperh/recipe_zs2017_track2