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Introduction
I Current supervised speech technology is built using hundreds of hours of

transcribed speech data and pronunciation dictionaries.
I For many languages, these resources are simply not available.
I We present an unsupervised Bayesian model which segments speech into

word-like segments and clusters these into hypothesized word types.

Dataset
I We evaluate our model in a connected digit recognition task.
I Use the TIDigits corpus. Development and test sets each contain:

112 speakers (male and female), 77 digit sequences per speaker.
I The corpus contains 11 word types: ‘oh’ and ‘zero’ through ‘nine’.

Evaluation
I Compare unsupervised decoding output to ground truth transcriptions: map

each discovered cluster to a ground truth label.
I From this we can calculate unsupervised word error rate (WER).
I Compare to a previous study by Walter et al. [ASRU, 2013]: discrete hidden

Markov models (HMMs) were trained unsupervised.
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Acoustic modelling: discovering word types
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Consider two settings for the number of components K :

1. Constrained: K = 11 is true number of word types.
2. Unconstrained: Model left to discover the number

of word types up to a maximum of K = 100.

Word segmentation of speech
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I Acoustic modelling and segmentation are performed jointly: Bayesian GMM
provides likelihood terms for segmentation; segmentation hypothesizes the
boundaries for the word segments which are clustered.

I Implemented as a blocked Gibbs sampler with dynamic programming.

Results

Table: Development and test set WERs (%).
Model Dev. Test
Constrained∗ discrete HMM
[Walter et al., ASRU 2013] 32.1 -

Average constrained Bayes 21.1 27.2
Highest prob. constr. Bayes 11.2 20.8
Avg. unconstrained∗ Bayes 20.7 32.3
Highest prob. unconstr. Bayes 20.6 32.3 0.8 0.9 1.0 1.1 1.2

Model score log p(X , z;α,β) ×107
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∗constrained refers to models limited to K = 11 clusters; unconstrained allows up to K = 100

Embeddings in discovered clusters for single speaker

Figure: Embedding
vectors ordered and
stacked by discovered type
along the y-axis, with
embedding values coloured
along the x-axis.

Embedding dimensions
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33 → one

66 → five

38 → oh

60 → four

83 → seven

12 → two

47 → three
51 → eight

27 → six

92 → nine

63 → zero

14

C
lu

st
er

an
d

m
ap

pi
ng

Mapping between clusters and ground truth digits
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Figure: Colouring indicates
the number of frames from a
ground truth digit that
overlaps with a particular
cluster. 15 biggest clusters
from an unconstrained model
over all speakers are shown.
The model used all K = 100
components, but it’s 13
biggest clusters cover more
than 90% of the data.

Conclusions
I Presented a novel Bayesian model for segmenting and clustering unlabelled

speech into hypothesized word-sized units.
I Achieved improvements over previous study using unsupervised HMM.
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