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Abstract

We use dynamic time warping (DTW) as supervision for training
a convolutional neural network (CNN) based keyword spotting
system using a small set of spoken isolated keywords. The aim
is to allow rapid deployment of a keyword spotting system in
a new language to support urgent United Nations (UN) relief
programmes in parts of Africa where languages are extremely
under-resourced and the development of annotated speech re-
sources is infeasible. First, we use 1920 recorded keywords (40
keyword types, 34 minutes of speech) as exemplars in a DTW-
based template matching system and apply it to untranscribed
broadcast speech. Then, we use the resulting DTW scores as
targets to train a CNN on the same unlabelled speech. In this
way we use just 34 minutes of labelled speech, but leverage a
large amount of unlabelled data for training. While the result-
ing CNN keyword spotter cannot match the performance of the
DTW-based system, it substantially outperforms a CNN clas-
sifier trained only on the keywords, improving the area under
the ROC curve from 0.54 to 0.64. Because our CNN system
is several orders of magnitude faster at runtime than the DTW
system, it represents the most viable keyword spotter on this
extremely limited dataset.
Index Terms: relief and developmental monitoring, keyword
spotting, convolutional neural networks, dynamic time warping,
under-resourced, zero-resource speech processing

1. Introduction
In societies with well-developed internet infrastructure, social
media has become a dominant medium for voicing views and
concerns about various social issues [1, 2, 3]. In countries like
Uganda, where internet availability is limited, phone-in talk
shows on local community radio stations are used in a similar
way. A United Nations (UN) piloted project has developed radio-
browsing systems for monitoring such radio shows in order to
inform relief and developmental purposes. These systems have
been very successful and are in active use.

In previous work [4, 5], we assumed the availability of small
amounts of transcribed data (initially about 9 hours and then just
12 minutes) for the development and deployment of such systems
in two regional languages, Luganda and Acholi. However, even
the preparation of a 12 minute transcribed corpus requires the
availability of annotators in the new language with appropriate
skills. This has proved a serious impediment to the development
of a radio browsing system in a new language. Here we therefore
turn our attention to the development of a keyword spotter that
can be set up using resources that are even easier to obtain: a
small set of isolated spoken keywords.

Recent advances in automatic speech recognition (ASR)
technology have mostly been restricted to scenarios where very

large transcribed speech resources are available [6, 7]. For key-
word spotting, where the goal is to search a speech signal for
occurrences of a keyword provided as text, most systems employ
ASR to produce lattices which are subsequently searched [8, 9].
This is not feasible without at least a minimal corpus of tran-
scribed speech in the target domain.

In settings where transcribed data is not available, re-
searchers have attempted to achieve ASR-free keyword spotting
by adopting a query-by-example (QbyE) retrieval procedure. In
QbyE, the search query is provided not as text but as audio. Typi-
cally, dynamic time warping (DTW) is used to match the acoustic
features from the search query to acoustic features from speech
in the search collection [10, 11]. Alternatively, queries and
search utterances can be mapped into a joint fixed-dimensional
space [12, 13], allowing for efficient retrieval using vector com-
parisons. Such fixed-dimensional vector representations can
be obtained using recurrent neural networks [14, 15] or, when
matching word pairs are known, a Siamese convolutional neural
network (CNN) [16]. In [17], an ASR-free keyword spotter is
described which maps textual and acoustic input into a shared
fixed-dimensional space where text queries can be compared
directly to search utterances. However, all these ASR-free neural
QbyE approaches rely on large amounts of training data.

In this paper, we combine DTW and CNNs to develop an
ASR-free keyword spotter that is trained on an easy-to-obtain
small number of isolated keyword utterances. Specifically, we
use a small seed corpus and DTW to calculate training targets
for a much larger unannotated corpus, that can subsequently be
used to train a CNN-based keyword spotter. The CNN model is
much faster than the DTW-based system (since alignment is not
required), making this a viable option for real-time monitoring.

2. Radio Browsing System Configuration
To give the broader context for our work, we first describe our
complete radio browsing system, shown in Figure 1. This figure
also shows our previous ASR-based implementation, in which
pre-processed speech from a live audio stream is passed to an
ASR system which generates lattices. These lattices are then
indexed and searched for the desired keywords. Our new sys-
tem replaces the ASR components with a CNN-DTW keyword
spotter. The detected keywords and their meta-data are passed
to human analysts who filter the information and format it into
a structured, categorised and searchable format appropriate for
humanitarian decision making and situational awareness. In
this scenario, high false positive rates can be tolerated because
the human analysts can discard false detections. The overall
approach allows the analysis of a large amount of audio data
while maintaining a high confidence in the final output. A more
detailed discussion on the role of human analysts and examples
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Figure 1: Radio browsing system showing the existing and the
proposed system.

of detected topics of interest are presented in [5].1

3. Data
In this first work we use a corpus of South African Broadcast
News (SABN) for experimental analysis. Since transcriptions
are available for this data, it allows system performance to be
experimentally evaluated. However in all other respects we
consider the SABN data as untranscribed. Ultimately our goal is
to apply this system to languages such as Somali, Rutooro and
Lugbara, for which no language resources are available at all.

The SABN corpus consists of 23 hours of speech from news
bulletins broadcast between 1996 and 2006 by one of the South
Africa’s main radio news channels, SAFM [18]. The corpus
contains a mix of newsreader speech, interviews, and crossings
to reporters. About 80% of the speakers can be considered
native English speakers. The division of the corpus into training,
development and test sets is shown in Table 1.

Table 1: The South African Broadcast News (SABN) dataset.

Utterances Speech (h)

Train 5231 7.94
Dev 2988 5.37
Test 5226 10.33
Total 13445 23.64

For the purpose of training our keyword spotter, we recorded
isolated utterances of 40 keywords, each spoken twice by 24
speakers (12 male and 12 female), leading to a set of 1920
labeled isolated keywords. Keywords were displayed to the
speakers sequentially, individually and in no particular order.
Keywords were recorded in a quiet room under very different
audio conditions and by different speakers than those in the
SABN data. This is representative of the intended operational
setting of our system, where isolated utterances of the required
keywords will be recorded on location from native speakers
using smart phones or audio recorders in conditions that will
differ from the radio broadcasts that must be monitored.

4. Keyword Spotting
Here we describe our proposed approach of using DTW and a
small set of individually recorded keywords to train a CNN on a
a much larger, untranscribed corpus. We briefly describe DTW-
and CNN-based keyword spotting approaches before describing
our combined procedure.

1Examples available at http://radio.unglobalpulse.net.

4.1. Keyword spotting using dynamic time warping

When only few isolated spoken keywords are available, dynamic
time warping (DTW) is an appropriate technique for their de-
tection since this technique requires as little as a single audio
template. DTW aligns two sequences of feature vectors by warp-
ing their time axes to achieve an optimal match. The associated
alignment cost can be used as a metric of similarity between se-
quences. For keyword spotting with DTW, features are extracted
for both the keyword and the search utterances. To determine
whether a keyword is present in an utterance, a naive method is to
compute the DTW cost of aligning the keyword with the speech
in a sliding window over the search utterance. More advanced
approaches that find subsequences have been proposed [19, 20],
however in this work we restrict ourselves to this simpler imple-
mentation. We use cosine distance for frame-wise comparison,
normalize to obtain per-frame cost, and use a frame-skip of 3
frames. The resulting cost c ∈ [0, 2] has a value of 0 when
the keyword matches a portion of the utterance exactly and a
value of 2 when they are dissimilar. By choosing an appropriate
threshold for c, it is possible to take a decision regarding the
presence of the keyword in unlabeled speech. Although useful
in low-resource settings, a major disadvantage of DTW-based
search is that it requires alignment between keywords and search
utterances, which can be prohibitively slow.

4.2. Convolutional neural network keyword spotting

In fully supervised settings where a large number of labelled
keywords are available, an end-to-end keyword spotter could
be trained to directly classify whether a keyword is present in a
search utterance. Although we have only a limited set of labelled
spoken keyword, we nevertheless attempt to train a supervised
CNN classifier in this way. This baseline CNN classifier is
trained directly in a supervised fashion on the 1920 recorded
isolated keywords, as well as negative samples drawn randomly
from utterances in the SABN training set. At test time, a sliding
window is applied and keyword presence is predicted based
on a threshold. Here we used a fixed window of 60 frames.
Similar QbyE and keyword spotting systems based on neural
networks have been developed using much larger labeled datasets
in previous work [16, 21, 22].

4.3. CNN-DTW keyword spotting

CNNs require large amounts of data for training, but are compu-
tationally efficient to apply. DTW-based keyword spotting, on
the other hand, can be applied with only a few keyword exem-
plars, but is computationally costly. Our proposal is to employ
DTW during training to address the challenge of data scarcity
while taking advantage of the speed benefits of CNNs at runtime.
We achieve this by using DTW to calculate similarity scores
between our small set of isolated keywords and a much larger
untranscribed dataset and then use this set of similarity scores as
targets to train a CNN. This strategy is shown in Figure 2. In the
upper half of the figure, each repetition of a keyword type (48
in our case) is aligned with an utterance from the untranscribed
data using DTW. Subsequently, the lowest cost among the 48
repetitions is determined. This procedure is repeated for all
keyword types (40 in our case). The result is a vector of scores
for each utterance in the untranscribed corpus. Each dimension
of this vector gives an indication of whether the corresponding
keyword is present in the particular utterance. These scores are
the targets used to train the CNN, as shown in the lower half of
Figure 2. The overall approach therefore relies only on a small
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set of labeled keywords and a large corpus of untranscribed
speech.

We now state our approach more formally. Consider a key-
word type K of which we have N repetitions:

K = (k1, . . . , ki, . . . , kN ) (1)

where each ki is the sequence of speech features for the ith

exemplar of keyword K. To obtain the DTW-based score indi-
cating how likely it is that a particular utterance U contains an
instance of keyword K, we calculate:

c = min
i∈1...N

[
min
up∈U

DTW{ki, up}
]

(2)

Each up is a successive segment of utterance U , and
DTW{ki, up} is the DTW alignment cost between the speech
features of exemplar ki and the segment up. Thus, we determine
the relevance of a keyword according to the lowest cost encoun-
tered when sweeping each of the exemplars over the current
utterance. Assuming we have L keyword types, we calculate
equation (2) separately for each of the L keywords. Hence for
utterance U we obtain costs [c1, . . . , cj , . . . cL]. Since we use
the averaged cosine distance in our DTW implementation, the
costs cj ∈ [0, 2]. In order to interpret these costs as probabilities,
we apply the normalization yj = − 1

2
cj + 1 so that yj ∈ [0, 1],

with 1 indicating a perfect match and 0 indicating maximum
dissimilarity. Finally, we combine all the normalized scores into
a single target vector y = [y1, . . . , yL] for utterance U .2

Given this target vector, we train a CNN to take U as input
and predict this target vector, as illustrated in the lower part
of Figure 2. Our CNN consists of a number of convolutional
layers, a global temporal max-pooling layer, and a number of
fully connected layers. The global max-pooling layer takes
the maximum of the activations over the time dimension, and
therefore gives a fixed-dimensional output independent of the
length of the input sequence. The intuition is that this would
extract the dominant features that are necessary for detecting
the presence of a keyword in the utterance. We use leaky ReLU
(α = 1/3) for all activations [23] except the final feedforward
layer which uses a sigmoid activation. Since our scores are
normalized to resemble probabilities, we train using the summed
binary cross-entropy loss:

` = −
L∑

j=1

{yj log ŷj + (1− yj) log [1− ŷj ]} (3)

This is the loss for a single training utterance, with ŷj the pre-
diction of our model for the j th keyword type (this would be a
single dimension from the model output). We sum this loss over
all M training utterances in the untranscribed corpus. Our CNN
model can thus be interpreted as L binary classifiers, one for
each keyword, with shared input layers. Finally, the trained CNN
can be applied to unseen test utterances, using an appropriate
threshold to determined the presence or absence of a keyword.

5. Experiments
5.1. Experimental setup

Three baseline systems are used for comparative evaluation.
Firstly, DTW is performed for each exemplar of a keyword and
the resulting scores averaged. This corresponds to an established

2We also considered applying a threshold to obtain hard targets (1
indicating the presence and 0 indicating the absence of the keyword),
but this did not improve performance.

Utterances

DTW

For all keywords

For all utternaces

Keywords

Output
 Layer 

Fully 
Connected 

Layer 

Global 
Temporal 

max-pooling 

Convolutional 
Layers 

MFCC 
features 

CNN

Utterances

Figure 2: The CNN-DTW keyword spotter training approach.
The top shows how the supervisory signal is obtained and the

bottom how this signal is used to train the CNN.

QbyE method and will therefore be indicated as DTW-QbyE.
Second, the minimum (best) score over all exemplars of a key-
word is used instead of the average. This will be referred to as
DTW-KS. Third, we consider the direct application of a CNN
classifier trained only on the isolated words, as described in Sec-
tion 4.2. These three baseline systems are compared with our
proposed CNN-DTW approach.

The CNN’s parameters such as the learning rate, number of
convolutional and fully connected layers, number of filters in the
convolutional layers, number of neurons in the fully connected
layers and the dropout probability for regularization were opti-
mized on the development set; this optimisation was performed
in terms of the summed binary cross-entropy loss of the DTW
targets on the development set, meaning that transcriptions of
the SABN data are not used for either training of validation.3 We
train using the Adam optimiser [24] along with an early stopping
criterion. Performance is reported in terms of the area under the
curve (AUC) of the receiver operating characteristic (ROC). The
ROC is a plot of the false positive rate against the true positive
rate, as the detection threshold is varied. AUC therefore indicates
the performance of the model independent of a threshold, with
higher AUC indicating a better model. We also report equal error
rate (EER), the point at which the false positive rate equals the
false negative rate (thus, lower EER is better).

5.2. Results and Discussions

Table 2 shows the performance for the different systems in terms
of AUC and EER averaged over the 40 keywords. From Ta-
ble 2 we find that the best result is obtained by the DTW-KS
configuration which uses the best scores obtained among all
exemplars of a keyword. The performance of our proposed algo-
rithm combining CNN and DTW is close to the average result
of the DTW-QbyE approach. The performance of the CNN clas-
sifier trained only on isolated words is much worse. We found
that including a Gaussian noise layer (GNL) between the input
and the convolution layers improved the AUC by approximately
1% absolute, showing that this noise layer aids in generalisation.

In a qualitative analysis we found that performance differed
significantly between different keyword types.Table 3 therefore
analyses the development set performance of the CNN-DTW
system on selected keywords. Examples (a), (c) and (e) are

3Final model: 10 convolutional layers with between 80 and 512 filters
per layer, two 3000-unit fully connected layers trained with a dropout of
0.5, and the learning rate is linearly changed from 10−4 to 10−5.
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Figure 3: Keyword occurrence distribution in the SABN corpus.

Table 2: Keyword spotting performance on development and test
sets with the execution time on the test set in minutes.

AUC EER Time
(min)dev test dev test

CNN 0.5698 0.5448 0.4435 0.4771 55
DTW-QbyE 0.6639 0.6612 0.3864 0.3885 900
DTW-KS 0.7556 0.7515 0.3092 0.3162 900
CNN-DTW 0.636 0.6285 0.4073 0.4161 5
CNN-DTW
inc. GNL

0.6443 0.6357 0.4036 0.4092 5

among the best-detected keywords, while (b), (d) and (f) are
among the worst. A keyword specific threshold (at the EER) was
used for this analysis. As an example, Table 3(a) shows that for
the keyword Government, at the EER, 93 of the 156 occurrences
are correctly detected and 1683 of the 2832 negatives have also
been correctly classified. As described in Section 2, we intend
to incorporate a human analyst in our overall radio-browsing
approach; here we picked a threshold at the EER for the purpose
of analysis, but a different threshold could be used depending on
how the human analyst would want to balance correct detections
and false positives. The ROC plots for each of the keywords
in Table 3(a-f) are shown in Figures 4(a-f), and are compared
to those of the DTW-KS system. We notice from the plots
that the performance of the CNN-DTW system is closer to the
DTW baseline for keywords occurring more often in the SABN
training set (shown in brackets in Table 3) and for keywords
with distinct pronunciations, such as HIV. The distribution of
the keywords in the SABN train, development and test sets are
shown in Figure 3, and we see that Government and War are
among the most frequent words. Note, again, that we never use
the transcriptions of these sets during training or validation.

In a practical setting, the computational complexity of run-
ning the keyword spotter on live audio is an extremely important
consideration. In this regard, our CNN-DTW keyword spotter
shows a clear advantage over its DTW-KS counterpart. As indi-
cated in Table 2, the application of the DTW baseline systems
for all 40 keywords and over all utterances in the 10-hour test
(Table 1) set was approximately 15 hours on a 20-core machine.
The CNN-DTW system, on the other hand, can process the same
data in approximately 5 minutes on a conventional desktop PC
with a single GeForce GTX 1080 GPU. Thus, we are able to
process the audio 180 times faster using the CNN-DTW sys-
tem, making it highly attractive for the cost-effective continuous
monitoring of live audio streams.

6. Conclusions
We have shown that, by combining CNNs and DTW, it is pos-
sible to obtain an ASR-free keyword spotting system that is

Table 3: Analysis of the 3 best performing and the 3 worst
performing keywords. The number of occurrences of each

keyword in the SABN corpus is shown in brackets. The absolute
number of true positives (TP), false positives (FP), true

negatives (TN) and false negatives (FN) are shown.
Government (156) Attack (51)
TP: 93 FP: 1149 TP: 25 FP: 1481
FN: 63 TN: 1683 FN: 26 TN: 1456

(a) (b)
HIV (21) Health (27)

TP: 14 FP: 1032 TP: 14 FP: 1422
FN: 7 TN: 1935 FN: 13 TN: 1539

(c) (d)
War (100) Wounded (15)

TP: 58 FP: 1222 TP: 8 FP: 1452
FN: 42 TN: 1666 FN: 7 TN: 1521

(e) (f)
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(c) Keyword: HIV
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(d) Keyword: Health
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(e) Keyword: War
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Figure 4: Receiver operating characteristic plots for selected
keywords for the DTW baseline and the proposed systems.

fast enough for real-time processing. Because it requires only a
small set of easily-obtained isolated keywords for training, it is
suitable for a low-resource keyword detection scenario in which
no further transcribed speech is available. The performance of
the proposed system is comparable with the DTW-based query-
by-example (QbyE) approaches which is commonly employed
in these situations, achieving an AUC of 0.64. Besides requiring
minimal resources to train, the proposed system is also compu-
tationally much more efficient than its DTW counterpart, and
is suitable for the real-time application required by the United
Nation’s ongoing efforts in humanitarian monitoring.
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