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Abstract

Although English is spoken throughout South Africa, it is most often used as
a second or third language, resulting in several prevalent accents within the
same population. When dealing with multiple accents in this under-resourced
environment, automatic speech recognition (ASR) is complicated by the need
to compile multiple, accent-specific speech corpora. We investigate how best
to combine speech data from five South African accents of English in order
to improve overall speech recognition performance. Three acoustic mod-
elling approaches are considered: separate accent-specific models, accent-
independent models obtained by pooling training data across accents, and
multi-accent models. The latter approach extends the decision-tree clus-
tering process normally used to construct tied-state hidden Markov models
(HMMs) by allowing questions relating to accent. We find that multi-accent
modelling outperforms accent-specific and accent-independent modelling in
both phone and word recognition experiments, and that these improvements
are statistically significant. Furthermore we find that the relative merits of
the accent-independent and accent-specific approaches depend on the partic-
ular accents involved. Multi-accent modelling therefore offers a mechanism
by which speech recognition performance can be optimised automatically,
and for hard decisions regarding which data to pool and which to separate
to be avoided.
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1. Introduction

Despite steady improvement in the performance of automatic speech
recognition (ASR) systems in controlled environments, the accuracy of these
systems still deteriorates strongly when confronted with highly accented
speech. In countries with non-homogeneous populations, non-mother-tongue
speech is highly prevalent. When the language in question is also under-
resourced, it is important to know how best to make use of the limited
speech resources to provide the best possible recognition performance in the
prevalent accents.

The South African constitution gives official status to eleven different
languages, as summarised in Figure 1. Although English is the lingua franca,
as well as the language of government, commerce and science, only 8.2% of the
population use it as a first language. Hence, English is used predominantly
by non-mother-tongue speakers, and this results in a large number of accents.
These accents are in general not bound to geographic regions, as is often the
case for other world accents. South African English (SAE) therefore provides
a challenging and relevant scenario for the modelling of accents in ASR. It also
can be classified as an under-resourced variety of English, since the annotated
speech available for the development of ASR systems is exceedingly limited.
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Figure 1: Mother-tongue speakers of the eleven official languages in South Africa, as a
percentage of the population (Statistics South Africa, 2004).

The research presented in this paper considers the question of how best
to optimise HMM-based acoustic models, when presented with a very limited
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corpus of different accents1 of SAE. Although the speech databases used in
this research are small compared to those used in state-of-the-art systems, the
scenario considered here is representative of an under-resourced environment
in which the presence of multiple accents further aggravates the development
of ASR technology.

2. Related Research

Two main approaches are encountered when considering the literature
dealing with multi-accent or multidialectal speech recognition. Some authors
consider modelling accents as pronunciation variants which are added to the
pronunciation dictionary employed by a speech recogniser (Humphries and
Woodland, 1997). Other authors focus on multi-accent acoustic modelling.
We will take the latter approach and begin by presenting a brief review.

2.1. Multi-Accent Acoustic Modelling

A popular approach to multi-accent acoustic modelling is to pool data
from all accents considered, resulting in a single accent-independent acoustic
model set. An alternative is to train separate accent-specific systems that
allow no sharing between accents. These two contrasting approaches have
been considered and compared by many authors, including those summarised
in Table 1. In most cases, accent-specific models lead to superior speech
recognition performance when compared with accent-independent models.
However, this is not always the case, as demonstrated by Chengalvarayan
(2001), and the comparative merits of the two approaches appear to depend
on factors such as the abundance of training data, the type of task and the
degree of similarity between the accents involved.

In cases where the quantity of data is insufficient for the training of accent-
specific models, adaptation techniques such as maximum likelihood linear
regression (MLLR) and maximum a posteriori (MAP) adaptation can be
employed. For example, MAP and MLLR have been successfully employed
in the adaptation of Modern Standard Arabic acoustic models for improved
recognition of Egyptian Conversational Arabic (Kirchhoff and Vergyri, 2005).

1According to Crystal (1991), the term ‘accent’ refers only to pronunciation differences,
while ‘dialect’ refers also to differences in grammar and vocabulary. It is not always obvious
whether we are dealing with accents or dialects when considering varieties of SAE, and we
shall therefore use the term ‘accent’ exclusively to avoid confusion.
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Table 1: Literature comparing accent-specific and accent-independent modelling ap-
proaches, as well as various forms of adaptation.

Authors Accents Task Training corpus Best approach

Van Compernolle
et al. (1991)

Dutch and
Flemish

Isolated digit
recognition

3993 Dutch and
4804 Flemish
utterances

Accent-specific
modelling

Beattie et al.
(1995)

Three dialects of
American English

Command and
control (200
words)

Not indicated Gender- and
dialect-specific
modelling

Fischer et al.
(1998)

German and
Austrian dialects

Large vocabulary
continuous speech
recognition

90h German; 15h
Austrian speech

Accent-specific
modelling

Chengalvarayan
(2001)

American,
Australian and
British dialects of
English

Connected digit
recognition

7461 American,
5298 Australian
and 2561 British
digit strings

Accent-
independent
modelling

Caballero et al.
(2009)

Five Spanish
dialects (Spain,
Argentina,
Venezuela,
Columbia,
Mexico)

Isolated word
recognition

50 000 Spanish
utterances and
10 000 from each
remaining dialect

Multi-dialect,
followed by
accent-
independent
modelling

Diakoloukas et al.
(1997)

Stockholm and
Scanian dialects
of Swedish

Travel
information task

21 000 Stockholm
sentences;
different amounts
of Scanian
adaptation data

Less data:
adaptation; more
data:
accent-specific
modelling

Wang et al. (2003) Non-native
English from
German speakers

Spontaneous
face-to-face
dialogues

34h native
English; 52min
non-native
adaptation data

Decision-tree-
based adaptation,
followed by MAP

Kirchhoff and
Vergyri (2005)

Modern Standard
Arabic and
Egyptian
Conversational
Arabic

Large vocabulary
continuous speech
recognition

40h Modern
Standard Arabic;
20h Egyptian
Conversational
Arabic

An approach
employing both
MAP and MLLR

Despres et al.
(2009)

Northern and
Southern dialects
of Dutch

Broadcast news 100h Northern
Dutch; 50h
Southern Dutch

MAP
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Although the results obtained by Diakoloukas et al. (1997) suggest that train-
ing acoustic models on target accented data alone is superior to adaptation
when larger amounts of accented data are available, Despres et al. (2009)
found that accent-independent models which have been adapted with ac-
cented data outperformed both accent-specific and accent-independent mod-
els for two varieties of Dutch. Similarly, Wang et al. (2003) showed that MAP
adapted models outperformed pooled models when considering recognition
of non-native English by German speakers. In that study, which considered
several pooling and adaptation strategies, models obtained using decision-
tree-based adaptation outperformed pooled, MAP-adapted and interpolated
models.

2.2. Multilingual Acoustic Modelling

The question of how best to construct acoustic models for multiple ac-
cents is similar in some respects to the question of how to construct acoustic
models for multiple languages. Multilingual speech recognition has received
some attention over the last decade, most notably by Schultz and Waibel
(2001). Their research considered large vocabulary continuous speech recog-
nition of 10 languages spoken in different countries and forming part of the
GlobalPhone corpus. In addition to the two traditional approaches already
described (pooling and separate models), these authors evaluated acoustic
models in which selective sharing of data between languages was allowed by
means of appropriate decision-tree training of tied-mixture HMM systems. In
tied-mixture systems, the HMMs share a single large set of Gaussian distri-
butions with state-specific mixture weights. This configuration allows similar
states to be clustered by maximising an entropy calculated using the mixture
weight vectors. The research found that language-specific systems exhibited
the best performance among the three approaches.

Multilingual acoustic modelling of four South African languages
(Afrikaans, English, Zulu and Xhosa) was addressed in (Niesler, 2007). Sim-
ilar techniques to those proposed by Schultz and Waibel were employed,
but in this case applied to tied-state HMMs. In a tied-state system, each
HMM state has an associated Gaussian mixture distribution and these dis-
tributions may be shared between corresponding states of different HMMs.
Multilingual HMMs showed modest average performance improvements over
language-specific and language-independent systems for the languages con-
sidered.
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2.3. Recent Research

More recently, Caballero et al. (2009) considered five dialects of Spanish
spoken in Spain and Latin America. Experiments were based on databases
recorded in Spain, Argentina, Venezuela, Colombia and Mexico. Different
approaches to multidialectal acoustic modelling were compared based on
decision-tree clustering algorithms using tied-mixture systems, as also em-
ployed by Schultz and Waibel (2001). Dialect-independent modelling (pool-
ing across dialects), dialect-specific modelling (separate modelling) and mul-
tidialectal modelling (obtained by allowing decision-tree questions relating
to both phonetic context and dialect) were compared. The training material
consisted of approximately 50 000 utterances by 3500 speakers from Spain,
and approximately 10 000 utterances by 800 speakers from each of the Latin
American countries. In isolated word recognition experiments, the multidi-
alectal models, achieving a word error rate (WER) of 6.63%, were shown to
outperform the dialect-independent model set (7.02% WER), which in turn
outperformed the dialect-specific model set (7.40% WER).

3. Speech Databases

3.1. The AST Databases

Our experiments were based on the African Speech Technology (AST)
databases (Roux et al., 2004). The databases consist of annotated telephone
speech recorded over both mobile and fixed telephone networks and contain
a mix of read and spontaneous speech. The types of read utterances include

Table 2: Percentage of the South African population falling into specific speaker groups,
loosely indicating the proportion of speakers of a corresponding SAE accent (Statistics
South Africa, 2004). ‘Other’ refers to speakers not falling into one of the relevant groups,
for example a White speaker using Xhosa as a first language.

Speaker group (ethnic group and first language) Speakers (%)
White Afrikaans speakers (AE) 5.66
Black speakers of an official Black language (BE) 77.78
Coloured Afrikaans or English speakers (CE) 8.77
White English speakers (EE) 3.77
Indian or Asian English speakers (IE) 2.33
Other 1.70
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isolated digits, digit strings, money amounts, dates, times, spellings and pho-
netically rich words and sentences. Spontaneous responses include references
to gender, age, home language, place of residence and level of education.
Utterances were transcribed orthographically as well as phonetically.

As part of the AST Project, five English speech databases were compiled,
corresponding to the following accents of English described by Schneider et al.
(2004): Afrikaans English (AE), Black South African English (BE), Cape
Flats English (CE), White South African English (EE), and Indian South
African English (IE). It is important to note that although the labels used
to differentiate between these accents are not intended to reflect Apartheid
classifications, there exists an undeniable correlation between the different
accents of English used in South Africa and the different ethnic groups. In
Table 2 an indication is given of the proportion of the South African popula-
tion using each of these accents. It is evident from the table that non-mother-
tongue variants of English (spoken by AE, BE and some CE speakers) are
used by the overwhelming majority of the population. Notwithstanding the
uneven distribution of speakers shown in Table 2, the five AST databases
have approximately equal size. Approximately 7 hours of annotated speech
data have been collected per accent, and this currently represents the largest
such resource of SAE available for research. A brief description of each accent
is presented in the following.

3.2. Varieties of South African English

English was originally brought to South Africa by British occupying forces
at the end of the 18th century. Today approximately 8.2% of the South
African population use English as a first language (Statistics South Africa,
2004). White South African English refers to the first language English
spoken by White South Africans, chiefly of British descent. When considering
the phonology, morphology and syntax of White South African English as
described by Bowerman (2004a,b), the influence of Afrikaans on White South
African English is noted as an important feature.

Afrikaans English refers to the accent used by White South African sec-
ond language English speakers of Afrikaans descent. Afrikaans is a Germanic
language with its origins in 17th century Dutch brought to South Africa by
settlers from the Netherlands. It was influenced by various other languages
including Malay, Portuguese and the Bantu and Khoisan languages, although
the Afrikaans vocabulary still has a predominantly Dutch origin. As indi-
cated in Table 2, White Afrikaans speakers comprise approximately 5.7% of
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the South African population.
Black South African English refers to the English spoken by non-mother-

tongue Black South Africans. Since 77.8% of the South African population
are considered Black Africans who employ one of the 9 official indigenous
African languages as a first language (Table 2), it is not surprising that Black
South African English has become prominent in government, commerce and
the media since 1994 (Van Rooy, 2004). Speech recognition of this accent
is therefore particularly important in the South African context. The AST
BE database contains English speech gathered from mother-tongue speakers
of the Nguni languages (Zulu, Xhosa, Swati, Ndebele) as well as speakers of
the Sotho languages (Northern Sotho, Southern Sotho, Tswana).

Indian languages were brought to South Africa by labourers who were
recruited from India after the abolition of slavery in European colonies in
the 19th century. These Indian languages have existed in South Africa since
1860, mainly in Natal (KwaZulu-Natal today). Indian South African English
presents an interesting sociolinguistic case: the dialect shifted from being as-
sociated with second language speakers (originally as a lingua franca) to
a first language, despite the Apartheid policy (1948-1991) preventing con-
tact between Indian children and first language English speakers (Mesthrie,
2004b). Today, the majority of South African Indians use English as a first
language. According to Statistics South Africa (2004), approximately 2.5%
of the South African population are considered Indian or Asian and 94%
speak English as a first language. The influence of not only English, but also
Zulu and (to a lesser extent) Afrikaans on the development of Indian South
African English is noted by Mesthrie (2004a,b).

Cape Flats English has its roots in 19th century working class residential
areas in inner-city Cape Town, where residents from many different ethnic af-
filiations, religions and languages came into regular contact with one another.
The accent spread as residents from these mixed neighbourhoods moved or
were forced to move to the Cape Flats (a low-lying, flat expanse bordered
by mountain ranges and the sea) in the 1960s and 1970s (Finn, 2004). The
term ‘Coloured’ applies to the mixed-race ethnic group most closely asso-
ciated with the Cape Flats English accent today. The diverse ancestry of
these speakers includes Europe, Indonesia, Madagascar, Malaysia, Mozam-
bique, Mauritius, Saint Helena and Southern Africa. While many Coloured
speakers use a dialect of Afrikaans as a home language, English is also of-
ten considered a first language (McCormick, 2004). These people comprise
approximately 8.8% of the South African population (Table 2). The connec-
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tion between Cape Flats English and Afrikaans English, which are both also
closely associated with White South African English, is emphasised by Finn
(2004).

3.3. Training and Test Sets

The five English AST databases were each divided into training, devel-
opment and evaluation sets, as indicated in Tables 3, 4 and 5 respectively.
The training sets each contain between 6 and 7 hours of speech from ap-
proximately 250 speakers, while the development and evaluation sets contain
approximately 14 minutes from 10 speakers and 25 minutes from 20 speak-
ers respectively. The development set was used only for the optimisation of
the recognition parameters before final testing on the evaluation set. For
the development and evaluation sets, the ratio of male to female speakers is
approximately equal and all sets contain utterances from both land-line and
mobile phones. There is no speaker-overlap between any of the sets. All data
in the five accented English AST databases is used in our experiments, for
training, for development, or for testing.

Table 3: Training sets for each database.

Database Speech
(h)

No. of
utterances

No. of
speakers

Phone
tokens

Word
tokens

AE 7.02 11 344 276 199 336 52 540
BE 5.45 7779 193 140 331 37 807
CE 6.15 10 004 231 174 068 46 185
EE 5.95 9879 245 178 954 47 279
IE 7.21 15 073 295 218 372 57 253

Total 31.78 54 079 1240 911 061 241 064

3.4. Phone Set

The AST project included the phonetic transcription of the five English-
accented databases by linguistic experts using a large IPA-based phone set,
similar to that described in (Niesler, 2007). Since certain phones occurred
only in some of the databases and with very low frequency, these were mapped
to a smaller set of 50 phones common to all five accents. Fewer than 1.2% of
all the phone tokens were affected by this process.
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Table 4: Development sets for each database.

Database Speech
(min)

No. of
utterances

No. of
speakers

Phone
tokens

Word
tokens

AE 14.36 429 12 6869 1855
BE 10.31 303 8 4658 1279
CE 13.49 377 10 6217 1700
EE 14.18 401 10 6344 1728
IE 14.53 620 13 7508 2044

Total 66.87 2130 53 31 596 8606

Table 5: Evaluation sets for each database.

Database Speech
(min)

No. of
utterances

No. of
speakers

Phone
tokens

Word
tokens

AE 24.16 689 21 10 708 2913
BE 25.77 745 20 11 219 3100
CE 23.83 709 20 11 180 3073
EE 23.96 702 18 11 304 3059
IE 25.41 865 20 12 684 3362

Total 123.13 3710 99 57 095 15 507

10



Table 6: Accent-specific phone bigram language model perplexities measured on the eval-
uation sets.

Database Bigram types Perplexity
AE 1891 14.40
BE 1761 15.44
CE 1834 14.12
EE 1542 12.64
IE 1760 14.24

Table 7: Accent-independent word bigram language model perplexities and OOV rates
measured on the evaluation sets.

Database Bigram types Perplexity OOV rate
AE 11 580 24.07 1.82%
BE 9639 27.87 2.84%
CE 10 641 27.45 1.40%
EE 10 451 24.90 1.08%
IE 11 677 25.55 1.73%

3.5. Language Models

Speech recognition performance was assessed in terms of both phone and
word error rates. For the phone recognition experiments, separate accent-
specific phone backoff bigram language models (Katz, 1987) were trained
for each accent using the corresponding training set transcriptions and the
SRILM toolkit (Stolcke, 2002). For the word recognition experiments, the
same tools were used to train accent-independent bigram language models
on the combined set of training transcriptions of all five accents in the AST
databases (approximately 240k words). Initial word recognition experiments
had indicated that such accent-independent language models significantly
outperformed accent-specific models trained individually on the training set
transcriptions of each accent. For phone recognition, the opposite was ob-
served, an effect that we ascribe to the larger sizes of the phone training sets
and the observation that, unlike the word sequences, the phone sequences
are clearly accent-specific. Absolute discounting was used for the estimation
of language model probabilities (Ney et al., 1994). The phone and word
language model perplexities are shown in Tables 6 and 7 respectively.
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3.6. Pronunciation Dictionaries

As part of the AST Project, five separate accent-specific English pronun-
ciation dictionaries were compiled by human annotators, corresponding to
the five English-accented AST databases described above. For our experi-
ments, rare pronunciations were omitted without allowing training set words
to be lost. Pronunciations for truncated, fragmented and mispronounced
words were also not retained in the dictionaries.

In order to obtain an indication of the similarity of the five accent-specific
dictionaries, we have considered the pair-wise phone alignment of correspond-
ing pronunciations. For each pair of dictionaries, the pronunciations of all
words common to both were aligned and the Levenshtein (or edit) distance
was calculated. This distance is simply the sum of the minimum number of
phone substitutions, insertions and deletions required to transform one pro-
nunciation into the other. The average Levenshtein distance between each
pair of dictionaries is presented in Table 8. The analysis shows that the
pronunciation differences are particularly large between BE and the other
accents. For example, on average 1.71 phone substitutions, insertions or
deletions are required to transform a BE into an EE pronunciation, while
the corresponding figure for EE and IE is just 0.60. The Levenshtein dis-
tance has been used in other studies to estimate accent and dialect similarity,
for example in (ten Bosch, 2000).

For the word recognition experiments, a single pronunciation dictionary
was obtained by simply pooling the five accent-specific pronunciation dictio-
naries. This simple approach allows the same dictionary to be used by all
recogniser configurations, and ensures a single fixed vocabulary for all exper-
iments. The alternative is to use the accent-specific dictionaries, which differ
in their vocabularies and therefore lead to higher out-of-vocabulary rates on

Table 8: Average Levenshtein distances for different pairs of accent-specific pronunciation
dictionaries, corresponding to the five accents of SAE. A larger value indicates a larger
difference between the dictionaries.

AE BE CE EE IE
0.0 1.52 0.85 0.79 0.92 AE

0.0 1.50 1.71 1.71 BE
0.0 0.68 0.79 CE

0.0 0.60 EE
0.0 IE
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the test set. We have evaluated this use of accent-specific dictionaries in a
set of experiments parallel to those that we will describe, and found that
word error rates were approximately 3% higher, but that the same relative
performance differences were observed between the competing systems, and
that precisely the same conclusions could be drawn. We have therefore re-
stricted ourselves to the use of the single, pooled dictionary in the following
experiments. This approach has the advantage that both the pronunciation
dictionary and the language model are common to all systems to be described,
and that any observed performance differences must therefore be a result of
differences in the acoustic modelling approaches we are investigating.

4. General Experimental Methodology

4.1. General Setup

Speech recognition systems were developed using the HTK tools (Young
et al., 2009). Speech audio data were parameterised as 13 Mel-frequency
cepstral coefficients (MFCCs) with their first and second order derivatives to
obtain 39 dimensional feature vectors. Cepstral mean normalisation (CMN)
was applied on a per-utterance basis. The parameterised training sets were
used to obtain three-state left-to-right single-mixture monophone HMMs
with diagonal-covariance using embedded Baum-Welch re-estimation. These
monophone models were then cloned and re-estimated to obtain initial cross-
word triphone models which were subsequently clustered using decision-tree
state clustering (Young et al., 1994). Clustering was followed by a further
five iterations of re-estimation. Finally, the number of Gaussian mixtures per
state was gradually increased, each increase being followed by a further five
iterations of re-estimation, yielding diagonal-covariance cross-word tied-state
triphone HMMs with three states per model and eight Gaussian mixtures per
state.

4.2. Acoustic Modelling Approaches

We considered three acoustic modelling approaches. The same three ap-
proaches have been previously applied to multilingual acoustic modelling in
tied-state systems (Niesler, 2007), and similar approaches were followed in
(Schultz and Waibel, 2001) and in (Caballero et al., 2009) for tied-mixture
topologies. The three approaches are distinguished by different methods of
decision-tree state clustering:
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1. Accent-Specific Acoustic Modelling: Accent-specific acoustic models are
obtained by not allowing any sharing of data between accents. By
growing separate decision-trees for the different accents, triphone HMM
states are clustered separately. Only questions relating to phonetic
context are employed, resulting in completely distinct sets of acoustic
models for each accent.

2. Accent-Independent Acoustic Modelling: A single accent-independent
model set is obtained by blindly pooling accent-specific data across ac-
cents for phones with the same IPA symbol. This means that phones
from different accents but with the same IPA classification are con-
sidered identical. A single set of decision-trees is constructed across
all accents and the clustering process employs only questions relating
to phonetic context, resulting in a single, accent-independent set of
triphone HMMs for all accents.

3. Multi-Accent Acoustic Modelling: As for accent-independent modelling,
a single set of decision-trees is grown across all accents. However, in
this case the decision-tree questions take into account not only the pho-
netic context, but also the accent of the basephone. The HMM states
of triphones with the same IPA symbols but from different accents can
therefore be kept separate if there is a significant acoustic difference be-
tween them, or can be merged if there is not. Tying across accents can
thus occur when triphone states are similar, while separate modelling of
the same triphone state from different accents can be performed when
there are differences.

The overview given in Section 2 has indicated that the relative merits of
the accent-specific and accent-independent modelling approaches appear to
depend on the recognition setup, the corpus size and the accents involved.
However, the experiments described in (Caballero et al., 2009) indicate that
multi-accent modelling presents a strategy by which the choice of the training
data partitioning can be achieved automatically when using tied-mixture
HMMs as acoustic models. We consider whether the multi-accent modelling
approach can yield similar improvements for accents of SAE, and when using
tied-state acoustic models, which may behave differently.

4.3. System Configuration and Optimisation

The three acoustic modelling approaches described in Section 4.2 were ap-
plied to the combination of the Afrikaans English (AE), Black South African
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English (BE), Cape Flats English (CE), White South African English (EE),
and Indian South African English (IE) training sets described in Section 3.3.

Our experiments consider the scenario where the accent of each test ut-
terance is assumed to be known during testing, as was also assumed in (Ca-
ballero et al., 2009). For each of the acoustic modelling approaches consid-
ered, evaluation involved presenting each test utterance only to the recogniser
matching the accent of that utterance. By configuring the recognition setup
in this way, we are isolating the effect of the acoustic models on recognition
performance, and are not taking into account the effects of accent misclassi-
fications, which would occur if the accent were unknown during testing.

Initial parameter optimisation on the development set indicated that
recognition performance measured separately for each accent and each acous-
tic modelling approach was very robust toward the word insertion penalty
(WIP) and language model scaling factor (LMS). The optimal WIP and LMS
values for the individual accents and acoustic modelling approaches were also
very similar. Based on this initial optimisation on the development set, a
single pair of WIP and LMS values was used across accents and acoustic
modelling approaches in all experiments.

The initial development set optimisation did however indicate that recog-
nition performance was sensitive to the number of independent parameters
used by the acoustic model set. Several sets of HMMs were therefore pro-
duced by varying the likelihood improvement threshold used during decision-
tree state clustering. For each acoustic modelling approach, this value was
then optimised separately on the development set. However, for a particular
acoustic modelling approach, the same threshold value was used regardless
of the accent. The minimum cluster occupancy was set to 100 frames for all
experiments.

5. Experimental Results and Analysis

5.1. Analysis of Phone Recognition Performance

Figure 2 shows the average phone recognition accuracy measured on the
evaluation set using the eight-mixture triphone models. Due to the sensitiv-
ity of this accuracy on the number of physical states used by the acoustic
models, recognition performance was determined for a range of model sizes.
The particular acoustic models which deliver optimal performance on the
development set are indicated by circular markers, and these systems will in
the following be referred to as the optimal systems.
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For each acoustic modelling approach a single curve indicating the average
accuracy between the five accents is shown. The number of physical states
for the accent-specific systems is taken to be the sum of the number of unique
states in each component accent-specific HMM set. The number of physical
states for the multi-accent systems is taken to be the total number of unique
states remaining after decision-tree state clustering and hence takes cross-
accent sharing into account. For all three approaches, the number of physical
states in the acoustic model is therefore directly related to the total number
of independent parameters. Hence, systems containing the same number of
independent parameters are aligned vertically in Figure 2.

The results presented in Figure 2 show that multi-accent acoustic mod-
elling and accent-independent modelling both yield consistently superior per-
formance compared to accent-specific modelling. Except for one system
(13 681 states), all multi-accent systems outperform their accent-independent
counterparts. Table 9 summarises the performance and the number of states
for the systems giving optimal average performance on the development set,
as indicated by the circular markers in Figure 2. For these optimal systems,
multi-accent acoustic modelling outperforms both accent-specific and accent-
independent modelling. The absolute improvements in phone accuracies (in
the order of 0.2% or more) are higher than those achieved for a set of similar
experiments performed for multiple languages, where improvements were in
the order of 0.1% (Niesler, 2007).

Since the triphone clustering process optimises the overall likelihood, im-
provements for each individual accent are not guaranteed. Table 10 shows
the per-accent phone accuracies for the optimal systems. These results show
that multi-accent acoustic models improve the phone recognition accuracy
relative to the remaining two approaches for CE and IE. For BE, accent-
specific (i.e. separate) modelling yields the best performance while for AE
and EE, accent-independent modelling (i.e. data pooling) leads to the best
performance. Nevertheless, the average accuracy over all five accents is high-
est for the multi-accent models.

Table 10 also shows that for AE, CE and EE it is better to pool the train-
ing data and build an accent-independent acoustic model set than to build
separate, accent-specific models. For BE, on the other hand, it is better to
do the opposite. For IE, the accuracies are very similar. In contrast, when
considering multilingual speech recognition, it is always better to train sep-
arate, language-specific acoustic models (Schultz and Waibel, 2001; Niesler,
2007). A further important observation, which will be supported by the word
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Figure 2: Average evaluation set phone accuracies of accent-specific, accent-independent
and multi-accent systems as a function of the total number of distinct HMM states. Cir-
cular markers indicate the systems delivering optimal performance on the development
set.

Table 9: The number of states and evaluation set phone accuracies for the optimal systems
identified by the circular markers in Figure 2.

Model set No. of states Accuracy (%)
Accent-specific 9119 64.81
Accent-independent 11 489 65.38
Multi-accent 9765 65.57
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Table 10: Phone accuracies for each accent individually using the optimal systems.

Model set AE BE CE EE IE Average
Accent-
specific

64.80 56.77 65.23 72.97 64.27 64.81

Accent-
independent

66.51 55.61 66.07 74.44 64.40 65.38

Multi-
accent

66.48 56.69 66.34 73.79 64.66 65.57

Table 11: The number of states and evaluation set word accuracies for the optimal systems
identified by the circular markers in Figure 3.

Model set No. of states Accuracy (%)
Accent-specific 6141 81.53
Accent-independent 2582 81.52
Multi-accent 4982 82.78

recognition experiments, is that, while the decision to pool or to separate the
training data depends on the particular accent in question, multi-accent mod-
elling allows almost all of this gain to be obtained in a data-driven manner.

5.2. Analysis of Word Recognition Performance

Figure 3 shows the average word recognition accuracy measured on the
evaluation set using the eight-mixture triphone models. For each acoustic
modelling approach a single curve indicating the average accuracy between
the five accents is shown. Once again, a range of acoustic models with dif-
fering numbers of physical states (and therefore differing numbers of inde-
pendent parameters) are considered, with the systems leading to optimal
performance on the development sets identified by circular markers. Fig-
ure 3 indicates that, over the range of models considered, multi-accent mod-
elling consistently outperforms both accent-specific and accent-independent
acoustic modelling. The results for the optimal systems are summarised in
Table 11. The performance improvements exhibited by the optimal multi-
accent system relative to both the optimal accent-specific as well as the
optimal accent-independent system were found to be significant at the 99.9%
level using bootstrap confidence interval estimation (Bisani and Ney, 2004).

Table 12 presents the word accuracies of the optimal systems separately
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Figure 3: Average evaluation set word accuracies of accent-specific, accent-independent
and multi-accent systems as a function of the total number of distinct HMM states. Cir-
cular markers indicate the systems delivering optimal performance on the development
set.

for each accent. For all accents best performance is achieved using the multi-
accent models. For CE, EE and IE accent-independent models obtained by
pooling the training data result in better performance than is achieved by
accent-specific modelling. The opposite is true for BE, while the two ap-
proaches yield very similar results for AE. Hence it is once again apparent
that the decision of whether to pool or to separate the training data depends
on the accents in question. The application of multi-accent acoustic mod-
elling allows this decision to be avoided, and sharing to be configured in a
data-driven manner instead.

Interestingly, Table 12 indicates that the accent-specific and multi-accent
modelling approaches yield slightly better performance for AE than for EE,
while this was not true for the corresponding phone accuracies in Table 10.
We believe that this can be attributed to the word language model perplex-
ities, which are lower for AE than for EE (Table 7). In contrast, the phone
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Table 12: Word accuracies for each accent individually using the optimal systems.

Model set AE BE CE EE IE Average
Accent-
specific

84.72 72.84 83.57 84.15 82.54 81.53

Accent-
independent

84.72 71.10 83.86 84.90 83.16 81.52

Multi-
accent

86.65 73.71 85.00 85.29 83.49 82.78

language model perplexity is substantially higher for AE than for EE (Ta-
ble 6). This discrepancy may, however, at least partially, be a result of the
different test sets used for the different accents. Furthermore, we have no-
ticed that the English proficiency of the Afrikaans speakers in the AE data
is very high in general, which may explain the relatively high AE recognition
accuracies.

5.3. Analysis of Decision-Trees

Inspection of the type of questions most frequently used during clustering
reveals that accent-based questions are most common at the root nodes of
the decision-trees and become increasingly less frequent towards the leaves.
Figure 4 analyses the decision-trees of the multi-accent system delivering
optimal word accuracy (4982 states, Table 11). The figure shows that ap-
proximately 47% of all questions at the root nodes are accent-based and that
this proportion drops to 34% and 29% for the roots’ children and grandchil-
dren respectively. For the first, second and third levels of depth, BE and
IE questions are asked most often. This indicates that, close to the root
nodes, separation of IE and BE states tend to occur more frequently than
for the other accents. As discovered in Sections 5.1 and 5.2, BE was also the
only accent for which accent-dependent (i.e. separate) modelling led to higher
phone and word recognition accuracies compared to accent-independent (i.e.
pooled) models.

The contribution to the log likelihood improvement made by the accent-
based and phonetically-based questions respectively during the decision-tree
growing process are shown in Figure 5 as a function of depth within the
decision-trees. The analysis indicates that phonetically-based questions make
a larger contribution to the log likelihood improvement than the accent-based
questions at all levels in the decision-trees. In Figure 5, approximately 37%
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depths within the multi-accent decision-trees for the multi-accent system with optimal
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21



0 2 4 6 8 10
Depth within decision tree (root = 0)

0

1

2

3

4

5

A
b

so
lu

te
in

cr
ea

se
in

ov
er

al
l

lo
g

lik
el

ih
o

o
d

(×
10

6
)

Phonetically-based questions

Accent-based questions

Figure 5: Analysis showing the contribution made to the increase in overall log likelihood
by the accent-based questions and phonetically-based questions respectively for the multi-
accent system with optimal word accuracy.

22



of the total increase at the root nodes is afforded by accent-based questions.
This proportion is lower than the corresponding figure of 74% for multilin-
gual acoustic modelling (Niesler, 2007). While Figures 4 and 5 both analyse
the decision-trees of the multi-accent system with optimal development-set
word accuracy, a repetition of the same analysis for the multi-accent system
with optimal phone accuracy, as well as for the largest multi-accent system,
revealed similar trends.

5.4. Analysis of Cross-Accent Data Sharing

In order to determine to what extent and for which accents data sharing
ultimately takes place for a multi-accent system, we considered the propor-
tion of decision-tree leaf nodes (which correspond to the state clusters) that
are populated by states from exactly one, two, three, four or all five accents
respectively. A cluster populated by states from a single accent indicates
that no sharing is taking place, while a cluster populated by states from all
five accents indicates that sharing is taking place across all accents. Figure 6
illustrates how these proportions change as a function of the total number of
clustered states in a system.

From Figure 6 it is apparent that, as the number of clustered states in-
creases, so does the proportion of clusters containing a single accent. This
indicates that the multi-accent decision-trees tend towards separate clusters
for each accent as the likelihood improvement threshold is lowered, as one
might expect. The proportion of clusters containing two, three, four or all
five accents show a commensurate decrease as the number of clustered states
increase. For the multi-accent system yielding optimal phone recognition
accuracy (9765 states, Table 9), approximately 33% of state clusters contain
a mixture of accents, while 44% of state clusters contain a mixture of ac-
cents for the optimal word recognition system (4982 states, Table 11). This
demonstrates that a considerable degree of sharing is taking place across ac-
cents. In contrast, for a comparable multilingual system, only 20% of state
clusters contained more than one language (Niesler, 2007).

In order to determine which accents are being shared most often by the
clustering process, Figures 7, 8 and 9 analyse the proportion of state clusters
consisting of groups of two, three and four accents respectively. Proportions
for the combinations not shown fall below 0.5%. It is evident from Figure 7
that the largest proportion of two-accent clusters are due to the combination
of AE and EE and of AE and CE. All other combinations are far less common.
In Section 3.2 the influence of Afrikaans on EE was noted, and this may
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Figure 6: Proportion of state clusters combining data from one, two, three, four or five
accents.

account for a higher degree of similarity between these accents. The influence
of Afrikaans on CE and the use of Afrikaans as a first language by many CE
speakers may in turn explain a phonetic similarity and therefore higher degree
of sharing between AE and CE. Figure 8 indicates that AE, CE and EE are
the most frequent three-accent combination, followed by the combination of
BE, CE and EE. Furthermore, Figure 9 shows that the two most frequent
four-accent combinations are AE, CE, EE, IE and AE, BE, CE, EE which
both include AE, CE and EE. The similarity of these three accents is therefore
emphasised in all three figures.

In order to determine which accents are being separated most often from
the others during the clustering process, Figure 10 presents the proportion of
state clusters consisting of just one accent. The most striking feature is the
high degree of separation of IE. BE is found in single-accent clusters second
most often, with the remaining three accents following. Figure 10 lends
further support to our conclusion that AE, CE and EE are most similar,
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since these three accents occur least frequently in single-accent clusters.
Finally, in order to obtain a further perspective on the results presented

in Figures 7, 8 and 9, Figure 11 analyses the proportion of decision-tree leaf
nodes that are populated by at least two, at least three, at least four, or all five
accents. This figure also indicates the proportion of state clusters containing
states from two or more of the members of the (AE, CE, EE) group of accents.
For the multi-accent system yielding optimal phone recognition accuracy
(9765 states, Table 9), approximately 21% of state clusters contain a mixture
of these three accents, while 24% of state clusters contain a mixture of these
accents for the optimal word recognition system (4982 states, Table 11). This
again highlights the similarity of the AE, CE and EE accents.

6. Estimation of Acoustic Model Similarity

To obtain some further intuition regarding the relative similarity between
the five SAE accents, we considered a computational method allowing the
similarity between the respective acoustic models to be estimated. This can
be achieved by determining the similarity between the probability density
functions (PDFs) associated with two sets of HMMs. Several such measures
have been proposed in the literature, including the Kullback-Leibler diver-
gence and the Bhattacharyya bound (Vihola et al., 2002; Olsen and Hershey,
2007). We have employed the Bhattacharyya bound, which is a widely-used
upper bound for the Bayes error of a classifier, and has been used in several
other studies (Mak and Barnard, 1996; Badenhorst and Davel, 2008; Hershey
and Olsen, 2008). The Bhattacharyya bound provides a simple closed-form
solution for Gaussian distributions, and is easy to interpret because it is
based on the Bayes error.

Although the analysis of pronunciation dictionary similarity presented in
Section 3.6 and Table 8 might also provide indications of accent similarity,
the decision-tree clustering employed in the multi-accent modelling approach
is based on acoustic similarity. The analysis which follows should therefore
give a better indication of the sharing potential between accents.

6.1. The Bhattacharyya Bound

Given the PDFs p1(x) and p2(x) and associated prior probabilities P1 and
P2, the Bayes error is given by (Fukunaga, 1990):

ε =

∫
min

[
P1 p1(x), P2 p2(x)

]
dx (1)
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By using the identity

min[a, b] ≤ asb1−s for 0 ≤ s ≤ 1 (2)

with a, b ≥ 0, an upper bound of equation (1) can be determined. If we
do not insist on the optimisation of s and choose s = 1/2, we obtain the
Bhattacharyya bound:

εu =
√
P1 P2

∫ √
p1(x) p2(x) dx ≥ ε (3)

When both p1(x) and p2(x) are Gaussian with means µi and covariance
matrices Σi, the closed-form expression for εu can be found to be (Fukunaga,
1990):

εu =
√
P1 P2 e

−D (4)

where

D =
1

8
(µ2 − µ1)T

[
Σ1 + Σ2

2

]−1

(µ2 − µ1) +
1

2
ln

∣∣Σ1+Σ2

2

∣∣√|Σ1| |Σ2|
(5)

The term D is known as the Bhattacharyya distance. When we assume the
prior probabilities to be equal, as suggested by Mak and Barnard (1996) and
by Badenhorst and Davel (2008), εu is bounded 0 ≤ εu ≤ 1/2 with εu = 1/2
when the PDFs are identical. Increased similarity between PDFs is thus
indicated when εu approaches 1/2.

6.2. Similarity between accent pairs

In order to verify our interpretation of the experimental results presented
in Section 5, and of our intuition regarding the five accents considered, we
used the Bhattacharyya bound to compute the degree of similarity between
each pair of accents. The single-mixture monophone HMMs which were
trained for each accent as part of the model development procedure described
in Section 4.1 were used for this purpose, since the Bhattacharyya bound
cannot easily be determined for Gaussian mixture densities. For each mono-
phone, the average of the three bounds calculated between corresponding
HMM states was obtained. This gives a measure of between-accent similarity
for a particular monophone. Finally, a weighted average of these similarities
is computed, where each individual similarity is weighted by the frequency
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Table 13: Average Bhattacharyya bounds for different pairs of SAE accents. A value of
εu = 1/2 indicates identical models, and increased similarity between accents is indicated
by εu approaching 1/2.

AE BE CE EE IE
0.5 0.3101 0.4030 0.3929 0.3302 AE

0.5 0.3516 0.3266 0.3266 BE
0.5 0.3679 0.3629 CE

0.5 0.3670 EE
0.5 IE

of occurrence of the phone in the training set. This final figure gives an
indication of the similarity between two acoustic models.

A comparison for the five SAE accents using the approach described above
is presented in Table 13. From this table it is evident that the highest degree
of similarity exists between the AE, CE and EE accents. BE appears to
be the most different from the other accents, showing the lowest similarity
of 0.3101 with AE. In general, the similarity values in Table 13 appear to
indicate that AE, CE and EE are rather similar, with IE lying further away
and BE being the most different. This is in agreement with our interpretation
of the experimental results presented in Section 5.

7. Summary and Conclusions

We have presented the evaluation of three approaches to multi-accent
acoustic modelling for five accents of South African English (SAE): Afrikaans
English (AE), Black South African English (BE), Cape Flats English (CE),
White South African English (EE), and Indian South African English (IE).
These English accents can be regarded as under-resourced, since very little
annotated speech data and very few associated resources (such as pronun-
ciation dictionaries) are currently available. Tied-state multi-accent acous-
tic models, obtained by introducing accent-based questions in the decision-
tree clustering process and thus allowing for selective sharing between ac-
cents, were found to yield improved performance compared to both accent-
independent models, obtained by simply pooling data across accents, and
accent-specific models obtained by separating training data for each accent.
These improvements were obtained for both phone and word recognition ac-
curacies, and were found to be statistically significant at the 99.9% level for
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the latter. It was also found that the relative merits of pooling training
data (for accent-independent modelling) and separating training data (for
accent-specific modelling) depend on the particular accents in question. In
particular, AE, CE, EE and IE are best pooled, while separate modelling
is more advantageous for BE. Nevertheless, the application of multi-accent
modelling results in average improvements over both alternatives. This allows
the choice of the training data partitioning strategy to become data-driven,
and eliminates the need to develop and compare multiple systems when new
datasets are used.

Analysis of the decision-trees constructed during the multi-accent mod-
elling process showed that questions relating to phonetic context resulted in
a much larger contribution to the likelihood increase than the accent-based
questions, indicating that the multi-accent models gain more from combined
modelling than from separation. The decision-tree analysis also indicated
that the AE, CE and EE accents were combined most often, while the BE
and IE accents were frequently modelled separately. This was supported by
an analysis of the relative similarities between the different SAE accents using
the Bhattacharyya bound. When contrasted with a comparable set of exper-
iments for multilingual acoustic modelling, we find that there is substantially
more data sharing for multi-accent systems, and that the improvements in
recognition accuracy are larger and statistically more significant.

8. Future work

In this paper we have considered multi-accent acoustic modelling for five
accents of SAE based on experiments where the accent of the test data is
assumed to be known. Future work will focus on the integration of the dif-
ferent acoustic modelling approaches into a single multi-accent ASR system
for which the accent of the input speech is unknown.
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