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ABSTRACT
Deep neural networks (DNNs) have become a standard component
in supervised ASR, used in both data-driven feature extraction and
acoustic modelling. Supervision is typically obtained from a forced
alignment that provides phone class targets, requiring transcriptions
and pronunciations. We propose a novel unsupervised DNN-based
feature extractor that can be trained without these resources in zero-
resource settings. Using unsupervised term discovery, we find pairs
of isolated word examples of the same unknown type; these provide
weak top-down supervision. For each pair, dynamic programming is
used to align the feature frames of the two words. Matching frames
are presented as input-output pairs to a deep autoencoder (AE) neural
network. Using this AE as feature extractor in a word discrimination
task, we achieve 64% relative improvement over a previous state-
of-the-art system, 57% improvement relative to a bottom-up trained
deep AE, and come to within 23% of a supervised system.

Index Terms— Unsupervised feature extraction, deep neural
networks, zero-resource speech processing, top-down constraints

1. INTRODUCTION

The use of deep neural networks (DNNs) has recently led to great
advances in supervised automatic speech recognition (ASR) [1, 2].
One view of these networks is that a deep feature extractor (often
initialized using unsupervised pretraining) is learnt jointly with a
supervised classifier, predicting phone classes in the case of ASR [3].
Despite the resurgence of neural network (NN) research in the super-
vised domain, the use of NNs as feature extractors for unsupervised
‘zero-resource’ speech processing tasks has received little attention.

Zero-resource technology aims to solve tasks such as phonetic
and lexical discovery [4, 5], spoken document retrieval [6], and query-
by-example search [7, 8] by using only raw speech data. Advances in
this area would enable technologies in languages where transcribed
data collection is too expensive, or where it is impossible (e.g. for
unwritten languages). The limited use of NNs in this domain is not
surprising since, without transcriptions or dictionaries, it is impossible
to obtain the phone class targets used for fine-tuning. Some [9, 10]
have considered unsupervised autoencoder NNs, but not explicitly for
improved feature extraction. We present a novel training algorithm
for deep networks in the zero-resource setting, employing a form of
weak supervision with the purpose of unsupervised feature extraction.
Since the aim is a better general representation of speech, our work is
relevant to any downstream zero-resource task.

The weak top-down supervision we use is obtained from an un-
supervised term discovery (UTD) algorithm, which finds reoccurring
word-like patterns in a speech collection [11, 12]. Other zero-resource

studies have also used such top-down constraints. In [13], ‘pronunci-
ations’ for UTD-discovered words were obtained after a bottom-up
tokenization of the speech into subword-like units. In [14], whole-
word HMMs were trained on discovered words; similar HMM states
were then clustered to automatically find subword unit models. When
using these top-down constraints alone, only the discovered word ex-
amples are used for model estimation, and much data is disregarded.

This was addressed in [15]. First, a Gaussian mixture model
(GMM) is trained bottom-up on a speech corpus, providing a universal
background model (UBM) that takes into account all data. UTD then
finds reoccurring words in the corpus. For each pair of word segments
of the same type, frames are aligned using dynamic time warping
(DTW). Based on the idea that different realizations of the same
word should have a similar underlying subword sequence, UBM
components in matching frames are attributed to the same subword
unit. The resulting partitioned UBM is a type of unsupervised acoustic
model where every partition corresponds to a subword unit. In a multi-
speaker word discrimination task, posteriorgrams calculated over the
partitioned UBM significantly outperformed the original features.

As in [15] (also in much earlier work [16], and very recently [17]),
the central idea of our new NN-based algorithm is that aligned frames
from different instances of the same word should contain information
useful for finding a better feature representation. Using layer-wise
pretraining of a stacked autoencoder (AE), our approach uses a large
corpus of untranscribed speech to find a suitable initialization. As
in [15], word pairs discovered using UTD are then DTW-aligned to
obtain frame-level constraints, which are presented as input-output
pairs to the AE. We refer to this NN, trained using weak top-down
constraints, as a correspondence AE. We use this AE as an unsuper-
vised feature extractor by taking the encoding from a middle layer. In
a word discrimination task, we compare the new feature representa-
tion to the original input features, as well as features obtained from
posteriorgrams over the partitioned UBM of [15]. One shortcoming
of [15] is that the UTD-step was simulated by using gold standard
word pairs extracted from transcriptions; here we use a practical
UTD system [12]. Our results show that NN-based feature extraction,
which has proven so advantageous in supervised ASR, can also result
in major improvements in the extreme zero-resource case.

2. UNSUPERVISED TRAINING ALGORITHM

We first present a concise overview of autoencoders (AEs) and how
these can be used to initialize deep neural networks (DNNs). We
then present the training algorithm of a correspondence AE, a neural
network using weak top-down supervision in the form of word pairs
obtained from an unsupervised term discovery (UTD) system.
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Fig. 1. Algorithm schematic for training the correspondence autoencoder for unsupervised feature extraction.

2.1. Autoencoders, pretraining and deep neural networks

An AE is a feedforward neural network where the target output
of the network is equal to its input [18, §4.6]. A single-layer AE
encodes its input x ∈ RD to a hidden representation a ∈ RD(0)

using a = s(W(0)x+b(0)), where W(0) is a weight matrix, b(0) is
a bias vector, and s is a non-linear vector function (tanh in our case).
The output z ∈ RD of the AE is obtained by decoding the hidden
representation using z = W(1)a + b(1). The network is trained
using backpropagation to achieve a minimum reconstruction error,
typically using the loss function ||x − z||2 when dealing with real-
valued data. A deep network can be obtained by stacking several AEs,
each AE-layer taking as input the encoding from the layer below it.
This stacked AE is trained one layer at a time, each layer minimizing
the loss of its output with respect to the original input x.

AEs are often used for non-linear dimensionality reduction by
having a hidden layer that is narrower than its input dimensional-
ity [19]. Although AEs with more hidden units than the input are in
principle able to learn the identity function to achieve zero reconstruc-
tion error, [20] found that in practice such networks often still learn a
useful representation since early stopping provides a form of regular-
ization. In our own experiments, we found that such AEs provide a
crucial initialization for our new AE-like network; our aim here is not
dimensionality reduction, but to find a better feature representation.

In a supervised setting, training a stacked AE, as explained above,
is one form of unsupervised pretraining of a NN. This is followed by
supervised fine-tuning where an additional output layer is added to
perform some supervised prediction task, resulting in a DNN [20].

2.2. The correspondence autoencoder

Here we present the novel training algorithm for a NN which we
call a correspondence autoencoder. While standard stacked AEs
trained on speech (such as those of [9, 10]) use the same feature
frame(s) as input and output, the correspondence AE uses weak top-
down constraints in the form of (discovered) word pairs to have input
and output frames from different instances of the same word. The
algorithm follows four steps, which are illustrated in Figure 1.

Step 1: Train a stacked AE. A corpus of speech is parametrized
into the set X = {x1,x2, . . . ,xT }, where each xt ∈ RD is the
frame-level acoustic feature representation of the signal (e.g. MFCCs).
GivenX , a stacked AE is trained unsupervised directly on the acoustic
features. Using this network as initialization for the correspondence
AE, we are taking advantage of a large amount of untranscribed
speech data to start at a point in weight space where the network
provides a representation close to the acoustic features themselves.

Step 2: Spoken term discovery. A UTD system is run on the
speech corpus. This produces a collection of N word segment pairs,
which we use as weak top-down constraints. In [14, 15], this step
was simulated by using gold standard word segment pairs extracted
from transcriptions. We present experiments both when using gold
standard word pairs and when using pairs obtained from UTD [12].

Step 3: Align word pair frames. In the third step of the algorithm,
the N word-level constraints from UTD are converted to frame-level
constraints. For each word pair, a dynamic time warping (DTW)
alignment [21] is performed using cosine distance as similarity metric
to find a minimum-cost frame alignment between the two words.
This is done for all N word pairs, and taken together provides a set
F = {(xi,yi)}Fi=1 of F frame-level constraints. Note that although
each frame pair is unique, the time warping allowed in the alignment
can result in the same frame occurring in multiple pairs.

Step 4: Train the correspondence AE. Using the stacked AE from
step 1 as initialization, the correspondence AE is trained on the frame-
level pairs F . For every pair (xi,yi), xi is presented as input to the
network while yi is taken as output. The complete network is then
trained using backpropagation. Although we refer to the resulting
network as an autoencoder to emphasize the relationship between
its input and output, it can also be described differently. Firstly, it
can be seen as a type of denoising autoencoder [22], an AE were the
input is corrupted by adding Gaussian noise or setting some inputs to
zero; this allows more robust features to be learnt. In our case, the
input xi can be seen as a corrupted version of output yi. Secondly,
our network can also be described as a standard DNN with a linear
output layer, initialized using layer-wise pretraining. Normally, the
term DNN is associated with a supervised prediction task, and our
network can be seen as predicting yi when presented with input xi.

Our aim is to use the correspondence AE as an unsupervised fea-
ture extractor that provides better word-discrimination properties than
the original features. To use it as such, the encoding obtained from
one of its middle layers is finally taken as the feature representation
of new input speech, as illustrated in the right-most block of Figure 1.

3. EXPERIMENTS

3.1. Experimental setup

We use data from the Switchboard corpus of English conversational
telephone speech. Using HTK [23], data is parameterized as Mel-
frequency cepstral coefficients (MFCCs) with first and second order
derivatives, yielding 39-dimensional feature vectors. Cepstral mean
and variance normalization (CMVN) is applied per conversation side.

For training the stacked AE (step 1), 180 conversations are used

5819



which corresponds to about 23 hours of speech. This same set was
used for UBM training in [15]. For experiments using gold standard
word pairs, we use the set used in [15] for partitioning the UBM; it
consists of word segments of at least 5 characters and 0.5 seconds in
duration extracted from a forced alignment of the transcriptions of
the 23 hour training set. The full gold standard set consists of nearly
N = 100k word segment pairs, comprised of about 105 minutes of
speech. About 3% of these pairs are same-speaker word pairs. DTW
alignment of the 100k pairs (step 3) provides a frame-level constraint
set of about F = 7M frames, on which the correspondence AE is
trained (step 4). In our truly unsupervised setup, we use word pairs
discovered using the UTD system of [12]. We consider two sets. The
first consists of about N = 25k word pairs obtained by searching the
above 23 hour training set. About 17% of these pairs are produced by
the same speaker. The second set consists of about 80k pairs obtained
by including an additional 180 conversations in the search. About
11% of these are same-speaker pairs.

All NNs are trained with minibatch stochastic gradient descent
using Pylearn2 [24]. A batch size of 256 is used, with 30 epochs of
pretraining (step 1) at a learning rate of 250 · 10−6 and 120 epochs of
correspondence AE training (step 4) at a learning rate of 2 ·10−3. Ini-
tially these parameters were set to the values given in [25], and were
then adjusted based on training set loss function curves and develop-
ment tests. Although it is common to use nine or eleven sliding frames
as input to DNN ASR systems, we use single-frame input. This was
also done in [10], and allows for fair comparison with previous work.
However, multi-frame input is the focus of future work.

Our goal is to show the suitability of features from the correspon-
dence AE in downstream zero-resource search and recognition tasks.
We therefore use a multi-speaker word discrimination task developed
specifically for this purpose [26]. The same-different task quantifies
the ability of a speech representation to associate words of the same
type and to discriminate between words of different types. For every
word pair in a test set of pre-segmented words, the DTW distance
is calculated using the feature representation under evaluation. Two
words can then be classified as being of the same or different type
based on some threshold, and a precision-recall curve is obtained by
varying the threshold. To evaluate representations across different op-
erating points, the area under the precision-recall curve is calculated
to yield the final evaluation metric, referred to as the average precision
(AP). In [26] perfect correlation was found between AP and phone
error rate in a supervised setting, justifying it as an effective way to
evaluate different representations of speech in unsupervised settings.

We use the same test set for the same-different task as that used
in [15]. It consists of about 11k word tokens drawn from a portion
of Switchboard distinct from any of the above sets. The set results
in 60.7M word pairs of which 96k are from the same word type. Of
these 96k pairs, only about 3% were produced by the same speaker.
Additionally, we also extracted a comparable 11k-token development
set, again from a disjoint portion of Switchboard. Since tuning the
hyperparameters of a NN is often an art, we present performance on
the development set when varying some of these parameters.

Since we share a common test setup, we can compare our feature
representation directly to previous work. As a first baseline we use
MFCCs directly to perform the same-different task. We then compare
our model to the partitioned UBM of [15] (Section 1) and the super-
vised NN systems of [26]. These single-layer multistream NNs were
trained to estimate phone class posterior probabilities on transcribed
speech data from the Switchboard and CallHome corpora, and have a
comparable number of parameters to our networks. We consider sys-
tems trained on 10 and 100 hours of speech. For the partitioned UBM
and NNs, test words are parameterized by generating posteriorgrams

over components/phone classes, and symmetrized Kullback-Leibler
divergence is used as frame-level metric for the same-different task.
For MFCCs and our AE-based features, cosine distance is used.

3.2. Choosing the network architecture

Choosing the hyperparameters of NNs is challenging. We therefore
describe the optimization process followed on the development data.

To use the correspondence AE as feature extractor, the encoding
from one of its middle layers is taken. We found that using features
from between the fourth-last to second-last encoding layers gave
robust performance. It is common practice to use a narrow bottle-
neck layer to force the network to learn a lower-dimensional encoding
at a particular layer. We experimented with this, but found that
performance was similar or slightly worse in most cases and therefore
decided to only vary the number of hidden layers and units.

We experimented with correspondence AEs ranging from 3 to
21 hidden layers with 50, 100 and 150 hidden units per layer trained
on the 100k gold standard word-pair set. AP performance on the
development set is presented in Figure 2. On this set, all networks
achieve performance greater than that of the input MFCCs. For all
three hidden unit settings, performance is within 12% relative to the
respective optimal settings for networks with 7 to 21 layers.

3.3. Gold standard weak top-down constraints

Table 1 shows the AP performance on the test set using the baseline
MFCCs, the UBM models from [15], our AE networks, and the super-
vised NNs from [26]. The partitioned UBM and the correspondence
AE were both trained on the gold standard 100k word-pair set. The
optimal AE network on the development set (Figure 2) was used.

As reported before, although the UBM alone does not yield
significant gains, the 100-component partitioned UBM results in a
34% relative improvement over the baseline MFCCs. Analogous
to the UBM, the stacked AE alone also produces no improvement
over the MFCCs. This contrasts with the results reported in [10],
where small improvements were obtained. However, [10] used much
smaller training and test sets, had a different training setup, and had
the explicit aim of tokenizing speech into subword-like units rather
than unsupervised feature extraction.

Without initializing the weights from the stacked AE, very poor
performance is achieved by the correspondence AE (0.024 AP). How-
ever, when pretraining is used, the resulting correspondence AE
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Fig. 2. Average precision (AP) on the development set for correspon-
dence AEs with varying numbers of hidden layers and units. In each
case the best hidden layer on the development set was used.

5820



Table 1. Average precision (AP) on the test set using MFCCs, the
UBM and partitioned UBM, the stacked and correspondence AEs
trained on the 100k gold standard word pairs, and supervised NNs.

Features AP
MFCC with CMVN 0.214

UBM with 1024 components [15] 0.222
1024-UBM partitioned into 100 components [15] 0.286

100-unit, 13-layer stacked AE 0.215
100-unit, 13-layer correspondence AE, no pretraining 0.024

100-unit, 13-layer correspondence AE, pretraining 0.469
English NN, 10 hours [26] 0.439

English NN, 100 hours [26] 0.516

Table 2. Average precision (AP) on the test set using the partitioned
UBM and correspondence AEs when varying the number of gold
standard word pairs N , with F the resulting number of frame pairs.

N F
Partitioned

UBM AP [15]
Correspondence

AE AP

105 7 · 106 0.286 0.469
104 7 · 105 0.284 0.385
103 7 · 104 0.266 0.286
102 7 · 103 0.206 0.259

outperforms the partitioned UBM by 64% relative, and more than
doubles the performance of the original MFCC features. This im-
provement of the correspondence AE (0.469 AP) over the partitioned
UBM (0.286), both using exactly the same weak form of supervision,
indicates that the NN is much better able to exploit the information
gained from the top-down constraints than the GMM-based model.

The correspondence AE also outperforms the 10-hour supervised
NN on this task, and comes close to the level of the 100-hour system.
Since we use gold standard word pairs here comprised of only 105
minutes of speech, these results are potentially significant from a low-
resource perspective. Although these improvements are surprising,
the form of explicit pair-wise supervision provided to the correspon-
dence AE is closely related to the word discrimination task. Further
investigation of these observations is the focus of future work.

As in [15], to investigate dependence on the amount of supervi-
sion, we varied the number of gold standard word-pair constraints
N = 100k, 10k, 1k and 100 by taking random subsets of the full
100k set; consequently, the number of frame-level constraints F is
varied. Results are shown in Table 2. For every set, the correspon-
dence AE was optimized on the development data. In all cases the
correspondence AE outperforms the partitioned UBM and the base-
line MFCCs. With as few as 1k pairs, the correspondence AE gives
the same performance as the partitioned UBM trained with all pairs.

3.4. Unsupervised term discovery weak top-down constraints

Finally, we present truly unsupervised results where an UTD sys-
tem [12] is used to provide the word pairs for weak supervision.
Results are shown in Table 3, with some baselines repeated from
Table 1. Two UTD runs are used (Section 3.1), and Table 1 includes
their pair-wise accuracies. The first produced 25k word pairs at an
accuracy of 46%, while the second produced 80k pairs at 36%. Cor-
respondence AEs were trained separately on the two sets of weak
top-down constraints, with each optimized on the development data.

Both correspondence AEs significantly outperform the MFCCs

Table 3. Average precision (AP) on the test set when using weak top-
down constraints from unsupervised term discovery (UTD). The num-
ber of word pairs N and accuracy of the UTD system is also shown.

Features N UTD Acc. AP
MFCC with CMVN - - 0.214

100-unit, 13-layer stacked AE - - 0.215
100-unit, 9-layer correspond. AE 25k 46% 0.339
100-unit, 13-layer correspond. AE 80k 36% 0.341

English NN, 10 hours [26] - - 0.439
English NN, 100 hours [26] - - 0.516

and stacked AE baselines by more than 57% relative in AP, coming
to within 23% of the 10-hour supervised NN baseline. Compared to
the partitioned UBM trained on 100k gold standard word pairs (0.286
AP, Table 1), the completely unsupervised correspondence AEs still
perform better by almost 19%, despite the much noisier form of weak
supervision. Performance of the best correspondence AE from the
gold standard word-pair case (0.469 AP, Table 1) relative to the best
unsupervised correspondence AE (0.341 AP, Table 3), indicates that
the noise introduced by the true UTD-step results in a penalty of 34%;
the correspondence AE nevertheless provides a better representation
than the other unsupervised baselines. It is unclear if the same will
hold for the previous models [14, 15] where the truly zero-resource
case was not considered.

A comparison of the two correspondence AEs in Table 3 shows
that, despite using significantly more pairs and allowing a deeper net-
work to be trained, the 80k set does not provide a major improvement
over the 25k set. This is attributed to the lower word-pair accuracy of
the former, and shows that there is a trade-off between UTD accuracy
and the number of pairs produced. Compared to the analysis in Ta-
ble 2, the 25k unsupervised-obtained pairs still provide more useful
supervision than 1k gold standard word pairs. A finer grained investi-
gation of the trade-off between word pairs and accuracy, which can
be varied by searching more data or by adjusting the search threshold,
is the focus of future work.

4. CONCLUSIONS AND FUTURE WORK

We introduced a novel scheme for training an unsupervised autoen-
coder (AE) neural network feature extractor, which uses weak top-
down supervision from word pairs obtained using an unsupervised
term discovery (UTD) system. We evaluated this correspondence AE
in a word discrimination task designed for comparing feature represen-
tations in zero-resource settings. In experiments where gold standard
word pairs from transcriptions were used for weak supervision, we
showed that our proposed AE gives a 64% relative improvement over
previously reported results using the same test setup. In our own truly
unsupervised setup where UTD was used to provide the weak top-
down constraints, our network outperformed both baseline MFCCs
and a standard stacked AE by more than 57%, coming to within 23%
of a supervised system trained on 10 hours of transcribed speech.
We conclude that the correspondence AE could greatly benefit down-
stream zero-resource tasks where transcriptions and dictionaries are
not available for system development. Future work will include using
the AE feature extractor to improve UTD accuracy, which in turn can
improve the weak top-down constraints, and so forth. We also aim to
explore the suitability of our AE feature extractor for supervised ASR.
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