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Abstract

South African English is currently considered an under-resourced variety of
English. Extensive speech resources are, however, available for North Amer-
ican (US) English. In this paper we consider the use of these US resources in
the development of a South African large vocabulary speech recognition sys-
tem. Specifically we consider two research questions. Firstly, we determine
the performance penalties that are incurred when using US instead of South
African language models, pronunciation dictionaries and acoustic models.
Secondly, we determine whether US acoustic and language modelling data
can be used in addition to the much more limited South African resources to
improve speech recognition performance. In the first case we find that using
a US pronunciation dictionary or a US language model in a South African
system results in fairly small penalties. However, a substantial penalty is
incurred when using a US acoustic model. In the second investigation we
find that small but consistent improvements over a baseline South African
system can be obtained by the additional use of US acoustic data. Larger
improvements are obtained when complementing the South African language
modelling data with US and/or UK material. We conclude that, when de-
veloping resources for an under-resourced variety of English, the compilation

∗Corresponding author. Tel.: +27 21 808 4118.
Email addresses: kamperh@sun.ac.za (Herman Kamper), fdw@sun.ac.za (Febe de

Wet), t.hain@dcs.shef.ac.uk (Thomas Hain), trn@sun.ac.za (Thomas Niesler)

Preprint submitted to Computer Speech and Language December 22, 2013



of acoustic data should be prioritised, language modelling data has a weaker
effect on performance and the pronunciation dictionary the smallest.

Keywords: under-resourced languages, accented speech, South African
English, varieties of English

1. Introduction

We will describe the development of large vocabulary speech recognition
systems for South African English (SAE), which is considered an under-
resourced variety of English because exceedingly little annotated speech data
is currently available (Davel et al., 2011; Kamper et al., 2012a). However,
although SAE may be considered under-resourced, other varieties of English,
notably North American (US) English, have abundant resources for the de-
velopment of speech technology. The primary aim of the research presented
in this paper is to determine how best to capitalise on these existing and
extensive language, pronunciation and acoustic modelling resources in the
development of our South African (SA) speech transcription system. We
consider the following two research scenarios and have structured the paper
accordingly.

Firstly, we investigate the performance penalty incurred when a specific
SA system component is absent and its US counterpart is used instead. To
achieve this, we perform a balanced comparison in which SA and US systems
are developed under equivalent model training conditions using speech cor-
pora of similar size and character. We highlight language, pronunciation and
acoustic differences through cross-domain experiments in which SA language
models, pronunciation dictionaries and acoustic models are replaced by their
US counterparts and vice-versa. By balancing the training conditions of the
SA and US systems we try to minimise performance differences due to mis-
matches in training corpus nature and size. The results of this investigation
identify the components upon which future SA resource collection and sys-
tem development efforts should focus and the components which can feasibly
be replaced by their US counterparts.

Secondly, we determine whether the extensive US acoustic and language
modelling resources could be used to improve on the performance of an SA
system. Here the US dataset is not limited artificially in size. Rather, the
complete and much larger US dataset is considered and experiments are
performed in order to determine the extent to which the US resources can
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be useful in the development of the SA system. These experiments reflect a
typical under-resourced setting in which the in-domain data is limited but
can be supplemented from extensive out-of-domain sources.

2. Background

Several studies have considered modelling approaches for different vari-
eties of the same language. For example, Chengalvarayan (2001) dealt with
the recognition of American, Australian and British varieties of English and
showed that a single acoustic model obtained by pooling data outperformed
a system employing separate models for each variety in parallel. Other au-
thors have considered adaptation approaches in which a model trained on
one variety is adapted using data from another variety. For example, Kirch-
hoff and Vergyri (2005) adapted Modern Standard Arabic acoustic models
for improved recognition of Egyptian Conversational Arabic. Similarly, De-
spres et al. (2009) found that an accent-independent model which has been
adapted with accented data outperformed both accent-specific and accent-
independent models for Northern and Southern varieties of Dutch. Recently,
selective data sharing across language varieties through the use of appropri-
ate decision-tree state clustering algorithms has received some attention (Ca-
ballero et al., 2009; Kamper et al., 2012b). In these studies, the multilingual
modelling approaches first proposed by Schultz and Waibel (2001) were ex-
tended to apply to multiple varieties of the same language.

There has also been increased recent interest in the development of sys-
tems using limited speech resources. Several authors have considered schemes
in which models trained on one set of languages are used to obtain models
for a new target language, either through a bootstrapping approach (Le and
Besacier, 2009) or through multilingual unsupervised training (Vu et al.,
2011). Currently, new adaptation and modelling approaches such as the
use of MLP-based features (Qian et al., 2011; Vu et al., 2012), deep neural
networks (Swietojanski et al., 2012), and subspace Gaussian mixture mod-
elling (Zhang et al., 2012; Imseng et al., 2012) are being extended in order
to deal with the challenges presented by limited resources.

Large vocabulary speech recognition of SAE has received very limited
attention in the literature. Davel et al. (2011) presented a segmentation
technique for harvesting SAE speech from the internet and showed that this is
a viable option for creating corpora from publicly-available sources. Kamper
et al. (2012b) considered speech recognition of the different accents of English
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spoken in South Africa using a fairly constrained dialogue-oriented telephone
speech corpus. A larger wideband corpus of prompted SAE is currently being
compiled as part of the NCHLT project (De Vries et al., 2011).

In contrast to SAE, there has been a long-standing focus on the contin-
uous improvement of large vocabulary speech recognition systems for US
English, notably in the broadcast news domain (Woodland et al., 1997;
Gales et al., 2006). This task has been extended to other languages and
language varieties including British (UK) English (Abberley et al., 1998),
Italian (Cettolo, 2000), French (Gauvain et al., 2005), Turkish (Arısoy et al.,
2007), dialects of German (Hecht et al., 2002), and varieties of Dutch (Van
Leeuwen et al., 2009; Despres et al., 2009). All of these can be considered
well-resourced languages because in each case substantial speech resources
are available.

The research we present here is an experimental investigation and is based
on established methodologies. Our contribution is a systematic and con-
trastive study which shows how data from the well-resourced US domain can
be used to replace or supplement corresponding SA resources and thereby
support the development of large vocabulary speech recognition in this under-
resourced variety of English. Furthermore, in contrast to many previous
studies, we consider not only acoustic modelling, but also pronunciation and
language modelling in our contrastive experiments. Our results can be used
to determine where resource development efforts should be focused in an
under-resourced domain and in which ways more extensive resources from a
well-resourced variety can be expected to be useful.

3. Speech resources

3.1. South African acoustic data

The work presented here is based on a recently-compiled corpus of SA
broadcast news (Kamper et al., 2012a). The broadcast news domain is at-
tractive for the development of large vocabulary speech recognition systems
in under-resourced environments because it provides both a ready source of
audio data as well as a variety of speech styles and quality. The SA cor-
pus consists of approximately 20 hours of audio recordings from one of the
country’s main radio news channels, SAFM. News bulletins were broadcast
between 1996 and 2006 and are a mix of newsreader speech, interviews, and
crossings to reporters. These varying channel conditions were manually an-
notated for each sentence-level segment in the corpus. In addition to channel
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condition, speaker identity and accent were noted for each segment. The
majority of the speakers in the corpus (contributing approximately 80% of
the data) can be considered native speakers of English. Audio was sampled
at 16 kHz and stored with 16-bit precision.

The corpus was divided into training (SA ACtrain) and test (SA test)
partitions as indicated in Table 1. The first chronological 17.10 hours of
data (extending up to March 2005) was used for training and the last 2.65
hours (April 2005 to March 2006) for testing. Some speaker overlap between
the training and test sets exists because data from the same newsreaders is
present in both. In particular, of the 535 speakers in the training set, 34 are
also present in the test set.

Table 1: Composition of the South African acoustic training (SA ACtrain) and test
(SA test) sets.

SA ACtrain SA test

Segments 9147 1412

Speakers 535 107

Speech (h) 17.10 2.65

3.2. North American acoustic data

Extensive resources are available for North American (US) broadcast news
through the Linguistic Data Consortium (LDC). Unfortunately there is no
fully transcribed corpus covering the same epoch as the SA data described
in the previous section. A US corpus of comparable structure and size was
therefore derived from the HUB-4 1996/1997 data (Graff et al., 1997; Fiscus
et al., 1998). Since the SA data was collected from a single radio channel,
we used US data from only two shows: CNN Prime Time News and CNN
The World Today. The data was further divided into training (US ACtrain)
and test (US test) sets as indicated in Table 2. US ACtrain stretches from 14
April 1996 to 5 October 1996, with US test continuing to the end of December
1997. The representation of the two CNN shows are approximately equal in
both sets. As for the SA corpus, audio was sampled at 16 kHz and stored
with 16-bit precision.

In addition to US ACtrain, which we used for the balanced system com-
parison presented in Section 5, we extracted a more extensive US training
set for use in the data augmentation and adaptation experiments described
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in Section 6. Using all the HUB-4 1996/1997 data but excluding the data in
US test, we compiled US AC130h consisting of approximately 130 hours of
US acoustic data. This additional training set is representative of the more
extensive US resources and is also indicated in Table 2.

Table 2: Composition of the North American acoustic training (US AC130h, US ACtrain)
and test (US test) sets. US ACtrain was developed to be comparable to SA ACtrain while
US AC130h is representative of the extensive availability of US acoustic resources.

US AC130h US ACtrain US test

Segments 36 669 5799 770

Speakers 5555 1115 202

Speech (h) 129.31 17.27 2.70

3.3. Text sources

A corpus of newspaper text was collected from a number of major South
African newspapers, including The Financial Mail, Business Day, The Sun-
day Times, The Times, Sunday World, The Sowetan, The Herald, The Algoa
Sun and The Daily Dispatch. From this text an SA language model training
set (SA LMtrain) consisting of approximately 109 million words and includ-
ing material from January 2000 to March 2005 was compiled.

A similarly sized corpus of US language model training material was
released by the LDC (MacIntyre, 1998). This set (US LMtrain) consists
of approximately 130 million words and was collected from transcribed news
broadcasts aired between January 1992 and June 1996. In addition to the
SA and US data we have also considered the use of UK language model
training material. For this purpose we have used a 30 million word corpus
(UK LMtrain) of transcribed BBC broadcasts stretching from early 1997 to
the end of 1999.

Finally, the transcripts of the SA and US broadcast news training sets
were also both available for language modelling purposes

3.4. Pronunciation dictionaries

An SA training pronunciation dictionary (used during alignment) for
the 14 622 unique words in SA ACtrain was developed by a phonetic ex-
pert (Loots and Niesler, 2010). Subsequently, pronunciations for the most
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frequent words in the SA language modelling data (Section 3.3) were deter-
mined by the same phonetic expert to obtain a recognition pronunciation
dictionary (SA dict60k) with 60 698 words and on average 1.25 pronuncia-
tions per word.

Similar US pronunciation dictionaries were derived from the background
dictionary described in (Wan et al., 2008). A training dictionary was gener-
ated for the 13 148 unique words in US ACtrain. To these, pronunciations
for the most frequent words in the US language modelling data (Section 3.3)
were added to obtain a recognition dictionary (US dict60k) with 59 642 words
and on average 1.02 pronunciations per word. A separate training dictionary
was also generated for the unique words in US AC130h. All pronunciation
dictionaries (both SA and US) are based on the same set of 45 phones. This
phone set was derived from ARPABET, as described by Rabiner and Juang
(1993), after mapping the rare phones /1/, /û/ and /R”/ to /@/, /w/ and /t/
respectively, and deleting the glottal stop /P/.

A comparison between SA, UK and US pronunciation dictionaries has
revealed that, in general, SA pronunciations are closer to their UK than
to their US counterparts, with the bulk of the differences being accounted
for by vowels (Loots and Niesler, 2010). In relation to other varieties, the
phonetics of South African English is often characterised by the vowels in
the words “kit” and “bath” (Bowerman, 2004). The former is referred to
as the “kit split”, and describes the process by which the close front vowel
, as used in US English, becomes the centralised /@/. The vowel used in
the SA pronunciation of “bath” is the back /a/, whereas the common US
pronunciation would employ the fronted /æ/. In contrast to US English, SA
English is non-rhotic, meaning that the liquid /r/ is not pronounced in words
such as “start” and “star”.

Our initial intention when embarking upon this research was to compare
the language, pronunciation and acoustic differences between SA, US and UK
varieties of English. However, despite some effort, we were unable to acquire
either an appropriate UK acoustic corpus or a suitable UK pronunciation
dictionary. Nevertheless, UK language modelling experiments are presented
in Section 6.

4. General experimental procedure

All acoustic models (AMs) were developed following the same procedure,
which is similar to that proposed in (Hain et al., 2010). Audio data was con-
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verted into a stream of 39-dimensional mel-frequency perceptual linear pre-
diction (MF-PLP) feature vectors (Woodland et al., 1997). Cepstral means
were subtracted on a per-utterance basis and subsequently cepstral vari-
ance normalisation was performed on a per-bulletin basis. Using the HTK
tools (Young et al., 2009), state-clustered phonetic decision-tree tied tri-
phone HMMs were trained using a three-state left-to-right model topology
and 16 Gaussian mixtures per state. Language models (LMs) were trained
using the SRILM toolkit (Stolcke, 2002). Trigram language models were used
throughout, with Kneser-Ney smoothing and Katz backoff (Chen and Good-
man, 1999). The first-best output from the HTK HDecode tool (Young et al.,
2009) was used in all recognition experiments. All word error rates (WERs)
were computed using the NIST Scoring Toolkit SCTK (NIST, 2009).

5. Substituting SA with US resources

In this section we investigate the effect of replacing SA language models,
pronunciation dictionaries and acoustic models with their US counterparts
and vice-versa. The aim is to assess the performance penalties involved
when incorporating US system components into our SA system. The results
will enable us to differentiate between speech resources that can feasibly be
inherited from the US domain and speech resources which are best developed
separately for the SA domain. For the experiments in this section, SA and
US models were trained on similar amounts of data from comparable sources
in order to ensure that results are not skewed by differences in training corpus
character or size.

5.1. Models and experimental setup

Using the procedure described in Section 4, a baseline SA acoustic model
(SA AM1) with 2624 states was trained on SA ACtrain. A comparable
baseline US acoustic model (US AM1) with 2697 states was trained on
US ACtrain.

In order to arbitrarily exchange language models and pronunciation dic-
tionaries between the SA and US systems, a consistent vocabulary is required.
In the following experiments we therefore restricted the vocabulary of the SA
and US language models and pronunciation dictionaries to the 39 423 words
that are common to SA dict60k and US dict60k. Note that this restriction
does not affect the size of the acoustic training set. For the SA system, lan-
guage models were trained separately on SA LMtrain and SA ACtrain and
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then linearly interpolated to yield the baseline SA LM40k model. Similarly,
language models were trained separately on US LMtrain and US ACtrain and
linearly interpolated to yield US LM40k. A development set consisting of the
transcriptions of the chronologically most recent 5% of SA ACtrain (Table 1)
was used to optimise the language interpolation weights for SA LM40k. An
analogous strategy was followed for US LM40k, in this case using the most
recent 5% of US ACtrain (Table 2). In both cases language model perfor-
mance was observed to be insensitive to the precise values of the interpolation
weights, which exhibited wide, flat perplexity minima.

The perplexities and out-of-vocabulary (OOV) rates measured on SA test
and US test using the two baseline language models are given in Table 3.
Note that, since the two language models are based on the same 40k vocabu-
lary, their OOV rates correspond. Under mismatched conditions substantial
perplexity increases of more than 80% are observed. Recognition pronuncia-
tion dictionaries containing SA and US pronunciations for the same 39 423-
word vocabulary were also compiled and are referred to as SA dict40k and
US dict40k, respectively.

Table 3: The 40k trigram language model perplexities and OOV rates measured on SA test
and US test.

Language model
SA test US test

Perplexity OOVs Perplexity OOVs

SA LM40k 129.6 3.78% 343.4 1.53%

US LM40k 238.6 3.78% 188.1 1.53%

5.2. Language model swaps

Table 4 shows recognition performance when exchanging language models
between the SA and US systems. Configurations 1 and 4 are the SA and US
40k baselines, respectively. By comparing the cross-domain results of these
two configurations it is evident that there is a large mismatch between the SA
baseline system and the US test set and vice-versa, with WERs more than
doubling in both cases (from 28.1% to 58.7% on SA test and from 30.9% to
62.6% on US test). By comparing the performance of configurations 1 and 2
on SA test and configurations 4 and 3 on US test, an absolute increase of
approximately 5% in WER is observed in both cases when using the language
model from the other domain.
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Table 4: WERs (%) measured on SA test and US test when exchanging SA and US
language models (LMs) between systems.

Configuration
SA test US test

AM LM Dictionary
1. SA AM1 SA LM40k SA dict40k 28.1 62.6
2. SA AM1 US LM40k SA dict40k 32.8 57.2
3. US AM1 SA LM40k US dict40k 49.5 36.0
4. US AM1 US LM40k US dict40k 58.7 30.9

5.3. Pronunciation dictionary swaps

Table 5 presents recognition results for systems in which pronunciation
dictionaries have been exchanged. Configurations 1 and 4 are the 40k baseline
systems first shown in Table 4. When the US dictionary is used in the SA
system (configuration 5), a degradation of 8% in WER is observed on SA test.
This degradation is far less than that observed on US test when using an SA
dictionary in a US system (configuration 6) leading to an increase of almost
17% in WER.

Although it seems that mismatched dictionaries (8% to 17% penalty)
have a more severe impact on WER than mismatched language models (∼5%
penalty, Section 5.2), we show in the following that this is due to the mis-
match between the dictionaries used during training and recognition. Ta-
ble 5 shows that a configuration in which the domain of the acoustic model
is inconsistent with the dictionary exhibits worse performance than a setup
in which only the test set is mismatched. For example, the combination
of the US acoustic model and US dictionary (configuration 4) yields better
performance on SA test (58.7%) than the combination of the US acoustic
model and SA dictionary (configuration 6) on the same test data (62.3%).
This highlights the interdependence of the acoustic model and the pronun-
ciation dictionary. In order to verify this interpretation, we have trained an
SA acoustic model using an alignment obtained using US pronunciations.
Pronunciations for 9249 words in SA ACtrain were available in our US back-
ground dictionary, covering only 55% of the SA ACtrain training set. In a
two-model re-estimation procedure, SA AM3 was trained on this subset of
SA ACtrain. To provide a fair baseline, a matching model set (SA AM2)
was trained on the same subset of SA ACtrain but using SA pronunciations.
SA AM2 and SA AM3 were chosen to have approximately the same num-
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Table 5: WERs (%) measured on SA test and US test when exchanging SA and US
pronunciation dictionaries between systems.

Configuration
SA test US test

AM LM Dictionary

1. SA AM1 SA LM40k SA dict40k 28.1 62.6

5. SA AM1 SA LM40k US dict40k 36.1 64.8

6. US AM1 US LM40k SA dict40k 62.3 47.8

4. US AM1 US LM40k US dict40k 58.7 30.9

Table 6: WERs (%) measured on SA test with systems employing SA acoustic mod-
els (AMs) trained using SA and US pronunciations, respectively labelled SA AM2 and
SA AM3. These two AMs were trained on a subset of SA ACtrain. SA AM4 was trained
on all of SA ACtrain using US pronunciations partially determined by letter-to-sound
rules.

Configuration
SA test

AM LM Dictionary

7. SA AM2 SA LM40k SA dict40k 29.1

8. SA AM3 SA LM40k US dict40k 29.8

9. SA AM4 SA LM40k US dict40k 28.6

ber of parameters (approximately 1800 states). The performance of these
acoustic models is presented in Table 6.

The 1% absolute drop in WER between configurations 1 and 7 in Ta-
bles 5 and 6, respectively, is a result of training on a smaller dataset. The
results show that the 8% performance drop in WER on SA test between
configurations 1 and 5 (Table 5) is much larger than the 0.7% drop between
configurations 7 and 8 (Table 6). Hence we see that, when using a recognition
pronunciation dictionary that is consistent with the training dictionary, the
performance degradation caused by the dictionary mismatch is dramatically
reduced.

Since a considerable amount of data is lost in the above procedure, a fur-
ther experiment was conducted in which the missing US pronunciations were
generated using letter-to-sound rules (Wan et al., 2008). All the SA acoustic
training material could thus be utilised to train an SA acoustic model using
US pronunciations (SA AM4). Using this acoustic model with SA LM40k
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Table 7: WERs (%) measured on SA test and US test when exchanging SA and US
acoustic models (AMs) between systems.

Configuration
SA test US test

AM LM Dictionary

1. SA AM1 SA LM40k SA dict40k 28.1 62.6

10. US AM1 SA LM40k SA dict40k 54.0 53.3

11. US AM2 SA LM40k SA dict40k 48.7 -

12. SA AM1 US LM40k US dict40k 41.9 60.0

4. US AM1 US LM40k US dict40k 58.7 30.9

and US dict40k, a WER of 28.6% was achieved on SA test (configuration 9,
Table 6). This figure should be compared with the SA baseline of 28.1%
WER (configuration 1, Table 5). Hence, a drop of only 0.5% in performance
is observed compared to the 8% drop incurred when training the acoustic
model using SA pronunciations (configuration 5). We can conclude that, as
long as we ensure that the training and recognition pronunciation dictionar-
ies correspond, the adoption of US pronunciations in an SA system leads to
a relatively small deterioration in performance.

5.4. Acoustic model swaps

Aside from repeating the 40k baselines first presented in Table 4, Ta-
ble 7 indicates the performance of an SA system using a US acoustic model
(configuration 10) as well as a US system using an SA acoustic model (config-
uration 12). It is evident that exchanging acoustic models between domains
leads to severe performance degradation. This is also observed consistently
in the results reported in Tables 4 and 5.

However, the preceding section has highlighted the interdependence of
acoustic models and pronunciation dictionaries. With this in mind, a fairer
estimate of the performance degradation that can be expected when using US
acoustic data in an SA system can be found by following a procedure analo-
gous to that used to train SA AM3. A new US acoustic model (US AM2) was
trained on the 54% of US ACtrain which was covered by the 8998 words for
which SA pronunciations were available in SA dict60k. A system employing
this US model with SA LM40k and SA dict40k achieved a WER of 48.7%
(configuration 11, Table 7). By comparing this system to configuration 7 in
Table 6 (which employs an SA acoustic model trained on a similar amount
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Table 8: Summary of WERs (%) and absolute penalties (%) measured on SA test when
sacrificing SA system components for US alternatives. All configurations use the same 40k
vocabulary.

Configuration WER Penalty

1. SA 40k baseline 28.1 -

11. Replace SA with US acoustic model 48.7 20.6

2. Replace SA with US language model 32.8 4.7

9. Replace SA with US pronunciations 28.6 0.5

of SA data), it is apparent that an acoustic model mismatch still results in
a big penalty even when consistency between the training and recognition
dictionaries is ensured.

5.5. Detailed summary and conclusion

Section 5 has presented experiments in which language, pronunciation and
acoustic models were exchanged between comparable systems developed for
the SA and US domains. Experiments focused on the usability of US system
components in the SA system in order to determine the penalty involved
when importing components from this variety.

A summary of the most important results is given in Table 8. Note that
the penalties shown in this table are not cumulative, but indicate the im-
pact of swapping the three different components of the recognition system.
Acoustic differences were found to contribute most to degradation, with sub-
stantial deterioration in all cross-domain tests. In particular, a 20.6% penalty
is incurred when US acoustic data is used to train acoustic models for the
SA system. Experiments in which language models were exchanged indi-
cated a drop of 4.7% in WER when sacrificing the SA language model for its
US alternative. Although the exchange of SA and US dictionaries initially
indicated big penalties, further investigation revealed that when US pronun-
ciations are used consistently during the training of SA acoustic models as
well as during recognition, the deterioration in WER is just 0.5%.

We conclude that, from an SA perspective, pronunciations from the
better-resourced US variety of English can be used at a relatively small cost.
Language modelling data can also be used, but at a slightly higher cost.
However, a substantial penalty is paid when using acoustic data from the US
domain.
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6. Augmenting SA with US resources

In Section 5 we considered the case in which an SA language, pronun-
ciation or acoustic model was assumed to be unavailable and consequently
a US counterpart was used instead. In this section we consider the case in
which the US resources are available in addition to the SA training material.
The aim is to determine whether performance improvements can be obtained
by augmenting the available SA resources with US resources during system
development.

6.1. Models and experimental setup

For the experiments in this section, the larger US corpus US AC130h was
used to train a new US acoustic model (US AM130h) with 4518 states fol-
lowing the procedure described in Section 4. Since the focus of this section
is to achieve the best possible recognition accuracy on the SA test set, we
use the full SA dict60k pronunciation dictionary (Section 3.4) and associated
60k vocabulary. Trigram language models were trained on SA LMtrain and
SA ACtrain using this 60k vocabulary. The two resulting models were lin-
early interpolated in a procedure analogous to that described in Section 5.1
to yield SA LM60k. This new baseline language model achieves a perplexity
of 139.9 on SA test with an OOV rate of 1.02%.

6.2. Augmenting SA with US acoustic training data

While the HUB-4 1996/1997 training set US AC130h contains approx-
imately 130 hours of US acoustic data (Table 2), the SA training set
SA ACtrain contains just 17 hours (Table 1). In the following we determine
whether the much larger US dataset can be used to improve the performance
of an SA speech recogniser.

Table 9 summarises the recognition performance of systems employing dif-
ferent acoustic models trained on the SA and US sets. In all cases decoding of
SA test was performed using SA LM60k and SA dict60k. Configuration 13
is the 60k baseline SA system and employs SA AM1 as acoustic model (Sec-
tion 5.1) which was trained exclusively on SA ACtrain. This 60k system
shows an absolute improvement of 3.5% in WER over the 40k SA baseline
(28.1%, configuration 1, Table 4). This improvement may be ascribed to the
larger vocabulary of the system, and associated lower OOV rate (1.02% in-
stead of 3.78% on SA test). Configuration 14 employs the larger US baseline
acoustic model US AM130h. As before, a large mismatch is seen between the
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US acoustic model and the SA test set, with an increase of 20.5% absolute
in WER relative to the SA baseline.

Configuration 15 employs an acoustic model (4653 states) trained on the
combination of US AC130h and SA ACtrain by straightforward pooling. In
this case, the US and SA training pronunciation dictionaries (Section 3.4)
were used respectively for the alignment of the US and SA data during train-
ing. This model outperforms the US acoustic model used in configuration 14
but is still clearly inferior to the baseline SA acoustic model (configura-
tion 13). This finding is in contrast to several studies in which improved
performance was achieved by pooling data from different varieties of the
same language (Chengalvarayan, 2001; Caballero et al., 2009; Despres et al.,
2009), although it agrees with the findings in (Fischer et al., 1998) and some
of the findings in (Kamper et al., 2012b). As before our results emphasise
that the SA and US speech data are acoustically quite different and that an
acoustic mismatch leads to an appreciable penalty.

For configuration 16, a number of iterations of maximum likelihood (ML)
retraining on SA ACtrain was performed using embedded Baum-Welch re-
estimation, using the acoustic model of configuration 15 as starting point.
Although WER performance improves from the 29.0% to 24.8%, this figure
is still slightly inferior to the SA baseline of 24.6%.

Finally, maximum a posteriori (MAP) adaptation (Gauvain and Lee,
1994) was performed on the acoustic model of configuration 15, using
SA ACtrain as adaptation material. The performance of the resulting acous-
tic model is indicated by configuration 17 in Table 9. In comparison to the
SA baseline (configuration 13), an improvement of 0.3% absolute in WER is
observed. Using bootstrap confidence interval estimation (Bisani and Ney,

Table 9: WERs (%) measured on SA test in the evaluation of several acoustic models
when using US AC130h in addition to SA ACtrain. SA LM60k and SA dict60k were used
in all cases during recognition.

Acoustic model WER

13. SA AM1: SA baseline trained on SA ACtrain 24.6

14. US AM130h: US models trained on US AC130h 45.1

15. Models trained on US AC130h and SA ACtrain 29.0

16. ML retraining of models in configuration 15 24.8

17. MAP adaptation of models in configuration 15 24.3
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2004), this improvement was found to be statistically significant only at the
80% level.

6.3. Reducing target domain acoustic training data

In configuration 17 the entire SA ACtrain corpus was used for adaptation.
Although SA ACtrain is small compared to US AC130h, it is still substantial
in terms of what may be available in an under-resourced setting. In the
following we consider the trends that emerge when adaptation is performed
on increasingly smaller amounts of SA acoustic data.

Several subsets of SA ACtrain were extracted, starting with the chrono-
logically most recent data and systematically adding more data until all of
SA ACtrain was included. For each such subset, two acoustic models were
trained: an SA-only acoustic model trained exclusively on the subset (anal-
ogous to SA AM1 in configuration 13); and an acoustic model obtained by
first pooling the data from that subset with US AC130h and then applying
MAP adaptation using the same subset (analogous to configuration 17).

Figure 1 shows the performance of systems using the SA-only and MAP-
adapted acoustic models. SA LM60k and SA dict60k were used in all cases.
The WER is shown as a function of the amount of SA acoustic data used for
training or adaptation. The rightmost points on the two curves correspond
to configurations 13 and 17 respectively (Table 9). Both curves indicate
that the performance improvement obtained by using more data tapers off
when more than approximately ten hours of SA data is available. Further-
more, the MAP-adapted models consistently outperform the corresponding
SA-only models1. Initially this improvement is quite large, with a decrease
of 2.5% absolute in WER when using just one hour of SA acoustic data.
The improvement falls to 0.6% when six hours of SA data is available and
reaches 0.3% when all 17 hours of data in SA ACtrain is used. The aver-
age performance improvement of the MAP-adapted models over the SA-only
models for systems using more than ten hours of SA data is 0.3% absolute in
WER. We conclude that, when less in-domain SA acoustic data is available,
we stand to gain more from also incorporating data from the well-resourced
US domain.

1These observations are over the limited SA dataset (17 hours) and the particular
training/test set split used. It is possible that, in a different setup, the two values shown
in Figure 1 would converge

16



0 2 4 6 8 10 12 14 16 18
SA acoustic data used for training/adaptation (hours)

24

26

28

30

32

34

36

W
or

d
er

ro
r

ra
te

(%
)

SA-only models

MAP-adapted SA models

Figure 1: WERs measured on SA test in a comparison of SA-only acoustic models (trained
on SA data alone) and MAP-adapted acoustic models (trained by adapting a US-based
model) when using different amounts of SA acoustic data. SA LM60k and SA dict60k
were used in all cases during recognition.
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Figure 1 also gives an indication of the amount of in-domain data that the
130 hours of out-of-domain data is “worth”. For instance, the performance of
an SA system trained exclusively on nine hours of SA data (achieving a WER
of almost 26%) can also be achieved by using eight hours of SA data for the
MAP adaptation of a US-based model. Hence, for an SA training set size of
eight hours, the additional 130 hours of US data is worth one hour of SA data.
For the systems incorporating less than ten hours of SA data, the “worth” of
the US data fluctuates between one and two hours. For ten hours and more, it
grows larger. In order to achieve the SA-only baseline performance of 24.6%
WER, which requires 17 hours of SA data, approximately twelve hours of SA
adaptation data is required in addition to the 130 hours of US data. Hence,
for an SA training set size of twelve hours, the additional US data is worth
five hours of SA data. Using this interpretation, the additive improvements
afforded by the additional US data become increasingly valuable in terms of
the additional amount of in-domain data that would have to be collected to
achieve the same improvement.

6.4. Augmenting SA with US and UK language modelling training data

Using the SA LMtrain, US LMtrain and UK LMtrain text sets (Sec-
tion 3.3) as well as the transcriptions of the SA ACtrain acoustic data (Ta-
ble 1), several language models were trained and evaluated. First, trigram
language models were trained separately on each of the four sets using the vo-
cabulary of SA dict60k. Next, these four language models were linearly inter-
polated in various combinations. Interpolation weights were optimised on the
SA development set described in Section 5.1 using the SRILM toolkit (Stol-
cke, 2002). The SA dict60k vocabulary was used throughout and decoding of
SA test was performed using SA AM1 and SA dict60k. Recognition results,
language model perplexities, and language model interpolation weights are
presented in Table 10.

First we wanted to determine, were no SA language modelling data to be
available at all, whether it is better to incorporate US or UK material than
to rely exclusively on the transcriptions of SA ACtrain. Configuration 18
employs a language model trained exclusively on SA ACtrain while configu-
rations 19 and 20 interpolate this model with US and UK background data,
respectively. Both configurations 19 and 20 outperform configuration 18,
indicating that the use of either US or UK background material is advan-
tageous. It appears that the UK-based model in configuration 20 is better
matched to the SA domain than the US-based model in configuration 19.
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Table 10: Language model interpolation weights, perplexities and WERs (%) measured
on SA test for the evaluation of several trigram language models when using US and/or
UK background material in addition to SA material. SA AM1 and SA dict60k were used
in all cases during recognition.

US
LMtrain

UK
LMtrain

SA
LMtrain

SA
ACtrain

SA test

Perplexity WER

18. - - - 1.00 328.9 33.9

19. 0.45 - - 0.55 189.3 27.3

20. - 0.55 - 0.45 174.0 26.8

13. - - 0.70 0.30 139.9 24.6

21. 0.12 - 0.61 0.27 134.5 23.9

22. - 0.32 0.47 0.22 131.4 23.9

23. 0.04 0.30 0.46 0.21 129.8 23.8

This is despite the fact that UK LMtrain (30M words) is much smaller than
US LMtrain (130M words).

Configuration 13 is the SA baseline first introduced in Table 9 and
employs the SA LM60k language model used in the experiments in Sec-
tion 6.2. This model was obtained by interpolating language models trained
on SA LMtrain and on SA ACtrain. By including a US language model in
the interpolation, the perplexity improves and WER decreases by 0.7% abso-
lute (configuration 21). By including a UK language model instead, an even
lower perplexity is achieved but no further WER improvements are observed
(configuration 22). In addition to the lower perplexity, a comparison of con-
figurations 21 and 22 shows that that the UK language model is assigned a
higher interpolation weight (0.32) than the US language model (0.12), again
indicating that the UK data is better matched to the SA domain than the
US data. Finally, by interpolating all four models from the US, UK and SA
domains, the lowest perplexity and a WER of 23.8% is achieved (configura-
tion 23). This represents an absolute improvement of 0.8% in WER over the
SA baseline. When using this best overall language model in combination
with the best overall acoustic model (used in configuration 17, Table 9), an
overall best WER of 23.7% is achieved.

19



6.5. Reducing target domain language modelling data
In the preceding experiments we have used the entire SA LMtrain corpus

of approximately 109M words, which is substantial. In an under-resourced
setting, this amount of language modelling material might not be available.
We therefore also wanted to determine how system performance would change
in a scenario where a substantial set of out-of-domain background language
modelling material was assumed to be available (US and UK material in this
case) but only a small set of in-domain (SA) material.

For this purpose, several SA background language modelling subsets of
increasing size were extracted from SA LMtrain. Using each of these, a tri-
gram language model was trained using the vocabulary of SA dict60k. Each
of these subset language models was subsequently used to produce two new
interpolated language models: an SA-only language model obtained by in-
terpolating the subset language model with the language model trained on
SA ACtrain; and an SA+US+UK language model obtained by interpolat-
ing the subset language model with language models respectively trained
on SA ACtrain, US LMtrain and UK LMtrain. In all cases interpolation
weights were optimised on the SA development set described in Section 5.1.

Figure 2 shows the perplexities and recognition performance achieved
when using the SA-only and the SA+US+UK language models. SA AM1
and SA dict60k were used during decoding in all cases. The rightmost points
correspond respectively to configurations 13 and 23 in Table 10. The WER
is shown as a function of the size of the SA background language modelling
set.

Consider first the curves for the SA+US+UK language models. An im-
provement of 0.9% absolute in WER is observed when using 10M words of
SA data compared to the case where no SA data is used. As the training
data is increased from 10M to 70M words, a commensurate decrease in both
perplexity and WER is observed. The WER improves by 1.3% absolute over
this range at a rate of approximately 0.22% WER per 10M words. After
70M words, recognition performance improvement seems to flatten out de-
spite further improvements in perplexity. The only further improvement in
recognition performance is observed when increasing the SA language mod-
elling text from 100M to 109M words.

In contrast, the curves for the SA-only language models indicate that
perplexity and recognition performance improve steadily as the SA language
model training data increases. It is evident that the SA+US+UK language
models consistently outperform the corresponding SA-only models. Initially
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Figure 2: WERs measured on SA test in the evaluation of language models when using US
and UK background material in addition to different amounts of SA language modelling
material. SA AM1 and SA dict60k were used in all cases during recognition.
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this improvement is relatively high with a decrease of 2.6% absolute in WER
when 10M words of SA language modelling data is available. This improve-
ment falls to 1.3% at 50M words and finally to 0.8% when using the full
109M words in SA LMtrain. In order to achieve a performance equal to the
SA-only baseline of 24.6% WER (configuration 13), an SA background lan-
guage modelling text of approximately 40M words is required in addition to
the US and UK sets of respectively 130M and 30M words.

6.6. Detailed summary and conclusion

Section 6 has considered whether improved speech recognition perfor-
mance can be achieved by supplementing the existing SA resources with US
and/or UK data. A summary of the key results is given in Table 11. The
incorporation of an additional 130 hours of US data into the SA system by
MAP adaptation led to an absolute improvement of 0.3% in terms of WER
relative to a system trained exclusively on the 17 hours of SA data. The incor-
poration of an additional 130M words of US and 30M words of UK language
modelling data led to an absolute improvement of 0.8% in WER relative to a
system using only 109M words of SA data. By supplementing both acoustic
and language modelling data, an absolute improvement of 0.9% was achieved
relative to a system trained exclusively on SA resources. Hence, US acoustic
and language modelling resources can be used to improve the performance
of an SA baseline system by almost one percent in WER. In terms of both
acoustic and language modelling, when less SA data is available, we stand to
gain progressively more from additional US and UK data. However, in both
cases the benefit afforded by the additional US and UK data also becomes
increasingly valuable in terms of the additional SA resources that would have
to be compiled to achieve the same improvement.

Table 11: Summary of WERs (%) and absolute improvement (%) over the SA baseline,
measured on SA test, when including US and/or UK resources in the development of an
SA system.

Configuration WER Improvement

13. SA baseline 24.6 -

17. Include US acoustic data using MAP 24.3 0.3

23. Use the SA+US+UK language model 23.8 0.8

24. MAP-adapted AM and SA+US+UK LM 23.7 0.9
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7. Overall conclusions

We have presented an experimental evaluation of the use of North Amer-
ican (US) resources in the development of a South African (SA) large vocab-
ulary speech recognition system.

Speech recognition results showed that a US recognition system in its
unmodified form is not suitable for use within the South African domain.
Directed experiments indicated that differences between the two domains are
present in language modelling data, in pronunciations, as well as in acoustic
modelling data. In a scenario where certain SA resources were assumed to be
completely absent, it was found that the incorporation of a US pronunciation
dictionary into an SA system led to the smallest performance penalty (0.5%
absolute in terms of word error rate). Larger accompanying penalties (be-
tween 2% and 5%) were observed when using language modelling data from
the US or UK domains instead of corresponding data from the SA domain.
Despite this degradation, when no SA language modelling data is available
at all, it is better to incorporate material from the US or UK domains than
to rely exclusively on the transcriptions of the SA acoustic data. The most
severe penalty (more than 20% absolute) was observed when an acoustic
model trained on SA data was replaced by a model trained on US data.

In a set of adaptation experiments we showed that SA acoustic models can
be improved slightly but consistently (approximately 0.3% absolute) by in-
corporating a large corpus of US acoustic data in addition to the SA data. In
this regard, maximum a posteriori (MAP) adaptation clearly outperformed
straightforward pooling of the SA and US acoustic data which led to deteri-
orated performance. The addition of out-of-domain language modelling data
from the US and UK domains also led to consistently better performance.
These improvements (in the order of 0.8%) were larger than those attained
by incorporating additional acoustic data.

Although the incorporation of additional US and/or UK data were ben-
eficial, we found that an increase in the size of the SA training corpora re-
mains the dominant driver for improved recognition performance. In terms
of acoustic modelling data, our experiments indicated that at least ten hours
of in-domain SA acoustic data should be compiled since performance begins
to level off once this point is reached. In terms of language modelling data,
the corresponding figure is approximately 50M words of text from the SA
domain.

From the system developer’s perspective it is clear that resource devel-
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opment efforts in an under-resourced setting such as ours should prioritise
the compilation of acoustic training data above pronunciation and language
modelling material. Additional acoustic and especially language modelling
resources from other varieties of English can subsequently be used to further
improve performance.
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