Vector and Matrix Calculus

Herman Kamper
kamperh@gmail.com

Published: 2013-01-30 Last update: 2021-07-26

1 Introduction

As explained in detail in [1], there unfortunately exists multiple competing notations concerning the layout of matrix derivatives. This can cause a lot of difficulty when consulting several sources, since different sources might use different conventions. Some sources, for example [2] (from which I use a lot of identities), even use a mixed layout (according to [1, Notes]). Identities for both the numerator layout (sometimes called the Jacobian formulation) and the denominator layout (sometimes called the Hessian formulation) is given in [1], so this makes it easy to check what layout a particular source uses. I will aim to stick to the denominator layout, which seems to be the most widely used in the field of statistics and pattern recognition (e.g. [3] and [4, pp. 327-332]). Other useful references concerning matrix calculus include [5] and [6]. In this document column vectors are assumed in all cases expect where specifically stated otherwise.

Table 1: Derivatives of scalars, vector functions and matrices $[1,6]$.

	scalar y	column vector $\mathbf{y} \in \mathbb{R}^{m}$	matrix $\mathbf{Y} \in \mathbb{R}^{m \times n}$
scalar x column vector $\mathbf{x} \in \mathbb{R}^{n}$ matrix $\mathbf{X} \in \mathbb{R}^{p \times q}$	$\begin{gathered} \text { scalar } \frac{\partial y}{\partial x} \\ \text { column vector } \\ \frac{\partial y}{\partial \mathbf{x}} \in \mathbb{R}^{n} \\ \text { matrix } \frac{\partial y}{\partial \mathbf{X}} \in \mathbb{R}^{p \times q} \\ \hline \end{gathered}$	row vector $\begin{gathered} \frac{\partial \mathbf{y}}{\partial x} \in \mathbb{R}^{m} \\ \text { matrix } \\ \frac{\partial \mathbf{y}}{\partial \mathbf{x}} \in \mathbb{R}^{n \times m} \end{gathered}$	matrix $\frac{\partial \mathbf{Y}}{\partial x}$ (only numerator layout)

2 Definitions

Table 1 indicates the six possible kinds of derivatives when using the denominator layout. Using this layout notation consistently, we have the following definitions.

The derivative of a scalar function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ with respect to vector $\mathbf{x} \in \mathbb{R}^{n}$ is

$$
\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}} \stackrel{\text { def }}{=}\left[\begin{array}{c}
\frac{\partial f(\mathbf{x})}{\partial x_{1}} \tag{1}\\
\frac{\partial f(\mathbf{x})}{\partial x_{2}} \\
\vdots \\
\frac{\partial f(\mathbf{x})}{\partial x_{n}}
\end{array}\right]
$$

This is the transpose of the gradient (some authors simply call this the gradient, irrespective of whether numerator or denominator layout is used).

The derivative of a vector function $\mathbf{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, where $\mathbf{f}(\mathbf{x})=\left[\begin{array}{llll}f_{1}(\mathbf{x}) & f_{2}(\mathbf{x}) & \ldots & f_{m}(\mathbf{x})\end{array}\right]^{\mathrm{T}}$ and $\mathbf{x} \in \mathbb{R}^{n}$, with respect to scalar x_{i} is

$$
\frac{\partial \mathbf{f}(\mathbf{x})}{\partial x_{i}} \stackrel{\text { def }}{=}\left[\begin{array}{llll}
\frac{\partial f_{1}(x)}{\partial x_{i}} & \frac{\partial f_{2}(x)}{\partial x_{i}} & \ldots & \frac{\partial f_{m}(x)}{\partial x_{i}} \tag{2}
\end{array}\right]
$$

The derivative of a vector function $\mathbf{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, where $\mathbf{f}(\mathbf{x})=\left[\begin{array}{llll}f_{1}(\mathbf{x}) & f_{2}(\mathbf{x}) & \ldots & f_{m}(\mathbf{x})\end{array}\right]^{\mathrm{T}}$, with respect to vector $\mathbf{x} \in \mathbb{R}^{n}$ is

$$
\frac{\partial \mathbf{f}(\mathbf{x})}{\partial \mathbf{x}} \stackrel{\text { def }}{=}\left[\begin{array}{c}
\frac{\partial \mathbf{f}(\mathbf{x})}{\partial x_{1}} \tag{3}\\
\frac{\partial \mathbf{f}(\mathbf{x})}{\partial x_{2}} \\
\vdots \\
\frac{\partial \mathbf{f}(\mathbf{x})}{\partial x_{n}}
\end{array}\right]=\left[\begin{array}{cccc}
\frac{\partial f_{1}(\mathbf{x})}{\partial x_{1}} & \frac{\partial f_{2}(\mathbf{x})}{\partial x_{1}} & \ldots & \frac{\partial f_{m}(\mathbf{x})}{\partial x_{1}} \\
\frac{\partial f_{1}(\mathbf{x})}{\partial x_{2}} & \frac{\partial f_{2}(\mathbf{x})}{\partial x_{2}} & \ldots & \frac{\partial f_{m}(\mathbf{x})}{\partial x_{2}} \\
\vdots & \vdots & \vdots & \vdots \\
\frac{\partial f_{1}(\mathbf{x})}{\partial x_{n}} & \frac{\partial f_{2}(\mathbf{x})}{\partial x_{n}} & \ldots & \frac{\partial f_{m}(\mathbf{x})}{\partial x_{n}}
\end{array}\right]
$$

This is just the transpose of the Jacobian matrix.
The derivative of a scalar function $f: \mathbb{R}^{m \times n} \rightarrow \mathbb{R}$ with respect to matrix $\mathbf{X} \in \mathbb{R}^{m \times n}$ is

$$
\frac{\partial f(\mathbf{X})}{\partial \mathbf{X}} \stackrel{\text { def }}{=}\left[\begin{array}{cccc}
\frac{\partial f(\mathbf{X})}{\partial X_{11}} & \frac{\partial f(\mathbf{X})}{\partial X_{12}} & \cdots & \frac{\partial f(\mathbf{X})}{\partial X_{1 n}} \tag{4}\\
\frac{\partial f(\mathbf{X})}{\partial X_{21}} & \frac{\partial f(\mathbf{X})}{\partial X_{22}} & \cdots & \frac{\partial f(\mathbf{X})}{\partial X_{2 n}} \\
\vdots & \vdots & \vdots & \vdots \\
\frac{\partial f(\mathbf{X})}{\partial X_{m 1}} & \frac{\partial f(\mathbf{X})}{\partial X_{m 2}} & \cdots & \frac{\partial f(\mathbf{X})}{\partial X_{m n}}
\end{array}\right]
$$

Observe that the (1) is just a special case of (4) for column vectors. Often (as in [3]) the gradient notation is used as an alternative to the notation used above, for example:

$$
\begin{align*}
\nabla_{\mathbf{x}} f(\mathbf{x}) & =\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}} \tag{5}\\
\nabla_{\mathbf{x}} f(\mathbf{X}) & =\frac{\partial f(\mathbf{X})}{\partial \mathbf{X}} \tag{6}
\end{align*}
$$

3 Identities

3.1 Scalar-by-vector product rule

If $\mathbf{a} \in \mathbb{R}^{m}, \mathbf{b} \in \mathbb{R}^{n}$ and $\mathbf{C} \in \mathbb{R}^{m \times n}$ then

$$
\begin{equation*}
\mathbf{a}^{\mathrm{T}} \mathbf{C b}=\sum_{i=1}^{m} a_{i}(\mathbf{C b})_{i}=\sum_{i=1}^{m} a_{i}\left(\sum_{j=1}^{n} C_{i j} b_{j}\right)=\sum_{i=1}^{m} \sum_{j=1}^{n} C_{i j} a_{i} b_{j} \tag{7}
\end{equation*}
$$

Now assume we have vector functions $\mathbf{u}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}, \mathbf{v}=\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ and $\mathbf{A} \in \mathbb{R}^{m \times n}$. The vector functions \mathbf{u} and \mathbf{v} are functions of $\mathbf{x} \in \mathbb{R}^{q}$, but \mathbf{A} is not. We want to find an identity for

$$
\begin{equation*}
\frac{\partial \mathbf{u}^{\mathrm{T}} \mathbf{A} \mathbf{v}}{\partial \mathbf{x}} \tag{8}
\end{equation*}
$$

From (7), we have:

$$
\begin{align*}
{\left[\frac{\partial \mathbf{u}^{\mathrm{T}} \mathbf{A} \mathbf{v}}{\partial \mathbf{x}}\right]_{l}=\frac{\partial \mathbf{u}^{\mathrm{T}} \mathbf{A} \mathbf{v}}{\partial x_{l}} } & =\frac{\partial}{\partial x_{l}} \sum_{i=1}^{m} \sum_{j=1}^{n} A_{i j} u_{i} v_{j} \\
& =\sum_{i=1}^{m} \sum_{j=1}^{n} A_{i j} \frac{\partial}{\partial x_{l}} u_{i} v_{j} \\
& =\sum_{i=1}^{m} \sum_{j=1}^{n} A_{i j}\left[v_{j} \frac{\partial u_{i}}{\partial x_{l}}+u_{i} \frac{\partial v_{j}}{\partial x_{l}}\right] \\
& =\sum_{i=1}^{m} \sum_{j=1}^{n} A_{i j} v_{j} \frac{\partial u_{i}}{\partial x_{l}}+\sum_{i=1}^{m} \sum_{j=1}^{n} A_{i j} u_{i} \frac{\partial v_{j}}{\partial x_{l}} \tag{9}
\end{align*}
$$

Now we can show (by writing out the elements [Notebook, 2012-05-22]) that:

$$
\begin{align*}
{\left[\frac{\partial \mathbf{u}}{\partial \mathbf{x}} \mathbf{A} \mathbf{v}+\frac{\partial \mathbf{v}}{\partial \mathbf{x}} \mathbf{A}^{\mathrm{T}} \mathbf{u}\right]_{l} } & =\sum_{i=1}^{m} \sum_{j=1}^{n} A_{i j} v_{j} \frac{\partial u_{i}}{\partial x_{l}}+\sum_{i=1}^{m} \sum_{j=1}^{n}\left(\mathbf{A}^{\mathrm{T}}\right)_{j i} u_{i} \frac{\partial v_{j}}{\partial x_{l}} \\
& =\sum_{i=1}^{m} \sum_{j=1}^{n} A_{i j} v_{j} \frac{\partial u_{i}}{\partial x_{l}}+\sum_{i=1}^{m} \sum_{j=1}^{n} A_{i j} u_{i} \frac{\partial v_{j}}{\partial x_{l}} \tag{10}
\end{align*}
$$

A comparison of (9) and (10) completes the proof that

$$
\begin{equation*}
\frac{\partial \mathbf{u}^{\mathrm{T}} \mathbf{A} \mathbf{v}}{\partial \mathbf{x}}=\frac{\partial \mathbf{u}}{\partial \mathbf{x}} \mathbf{A} \mathbf{v}+\frac{\partial \mathbf{v}}{\partial \mathbf{x}} \mathbf{A}^{\mathrm{T}} \mathbf{u} \tag{11}
\end{equation*}
$$

3.2 Useful identities from scalar-by-vector product rule

From (11) it follows, with vectors and matrices $\mathbf{b} \in \mathbb{R}^{m}, \mathbf{d} \in \mathbb{R}^{q}, \mathbf{x} \in \mathbb{R}^{n}, \mathbf{B} \in \mathbb{R}^{m \times n}, \mathbf{C} \in \mathbb{R}^{m \times q}$, $\mathbf{D} \in \mathbb{R}^{q \times n}$, that

$$
\begin{equation*}
\frac{\partial(\mathbf{B} \mathbf{x}+\mathbf{b})^{\mathrm{T}} \mathbf{C}(\mathbf{D} \mathbf{x}+\mathbf{d})}{\partial \mathbf{x}}=\frac{\partial(\mathbf{B} \mathbf{x}+\mathbf{b})}{\partial \mathbf{x}} \mathbf{C}(\mathbf{D} \mathbf{x}+\mathbf{d})+\frac{\partial(\mathbf{D} \mathbf{x}+\mathbf{d})^{\mathrm{T}}}{\partial \mathbf{x}} \mathbf{C}^{\mathrm{T}}(\mathbf{B} \mathbf{x}+\mathbf{b}) \tag{12}
\end{equation*}
$$

resulting in the identity:

$$
\begin{equation*}
\frac{\partial(\mathbf{B x}+\mathbf{b})^{\mathrm{T}} \mathbf{C}(\mathbf{D} \mathbf{x}+\mathbf{d})}{\partial \mathbf{x}}=\mathbf{B}^{\mathrm{T}} \mathbf{C}(\mathbf{D} \mathbf{x}+\mathbf{d})+\mathbf{D}^{\mathrm{T}} \mathbf{C}^{\mathrm{T}}(\mathbf{B} \mathbf{x}+\mathbf{b}) \tag{13}
\end{equation*}
$$

by using the easily verifiable identities:

$$
\begin{gather*}
\frac{\partial(\mathbf{u}(\mathbf{x})+\mathbf{v}(\mathbf{x}))}{\partial \mathbf{x}}=\frac{\partial \mathbf{u}(\mathbf{x})}{\partial \mathbf{x}}+\frac{\partial \mathbf{v}(\mathbf{x})}{\partial \mathbf{x}} \tag{14}\\
\frac{\partial \mathbf{A} \mathbf{x}}{\partial \mathbf{x}}=\mathbf{A}^{\mathrm{T}} \tag{15}\\
\frac{\partial \mathbf{a}}{\partial \mathbf{x}}=\mathbf{0} \tag{16}
\end{gather*}
$$

Some other useful special cases of (11):

$$
\begin{equation*}
\frac{\partial \mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{b}}{\partial \mathbf{x}}=\mathbf{A} \mathbf{b} \tag{17}
\end{equation*}
$$

$$
\begin{gather*}
\frac{\partial \mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x}}{\partial \mathbf{x}}=\left(\mathbf{A}+\mathbf{A}^{\mathrm{T}}\right) \mathbf{x} \tag{18}\\
\frac{\partial \mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x}}{\partial \mathbf{x}}=2 \mathbf{A} \mathbf{x} \text { if } \mathbf{A} \text { is symmetric } \tag{19}
\end{gather*}
$$

3.3 Derivatives of determinant

See [7, p. 374] for definition of cofactors. Also see [Notebook, 2012-05-22].
We can write the determinant of matrix $\mathbf{X} \in \mathbb{R}^{n \times n}$ as

$$
\begin{equation*}
|\mathbf{X}|=X_{i 1} C_{i 1}+X_{i 2} C_{i 2}+\ldots+X_{i n} C_{i n}=\sum_{j=1}^{n} X_{i j} C_{i j+} \tag{20}
\end{equation*}
$$

Thus the derivative will be

$$
\begin{align*}
{\left[\frac{\partial|\mathbf{X}|}{\partial \mathbf{X}}\right]_{k l} } & =\frac{\partial}{\partial X_{k l}}\left\{X_{i 1} C_{i 1}+X_{i 2} C_{i 2}+\ldots+X_{i n} C_{i n}\right\} \\
& =\frac{\partial}{\partial X_{k l}}\left\{X_{k 1} C_{k 1}+X_{k 2} C_{k 2}+\ldots+X_{k n} C_{k n}\right\} \\
& =C_{k l} \quad \text { (can choose } i \text { any number, so choose } i=k \text {) }
\end{align*}
$$

Thus (see [7, p. 386])

$$
\begin{equation*}
\frac{\partial|\mathbf{X}|}{\partial \mathbf{X}}=\operatorname{cofactor} \mathbf{X}=(\operatorname{adj} \mathbf{X})^{\mathrm{T}} \tag{22}
\end{equation*}
$$

But we know that the inverse of \mathbf{X} is given by [7, p. 387]

$$
\begin{equation*}
\mathbf{X}^{-1}=\frac{1}{|\mathbf{X}|} \operatorname{adj} \mathbf{X} \tag{23}
\end{equation*}
$$

thus

$$
\begin{equation*}
\operatorname{adj} \mathbf{X}=|\mathbf{X}| \mathbf{X}^{-1} \tag{24}
\end{equation*}
$$

which, when substituted into (22), results in the identity

$$
\begin{equation*}
\frac{\partial|\mathbf{X}|}{\partial \mathbf{X}}=|\mathbf{X}|\left(\mathbf{X}^{-1}\right)^{\mathrm{T}} \tag{25}
\end{equation*}
$$

From (25) we can also write

$$
\begin{equation*}
\left[\frac{\partial \ln |\mathbf{X}|}{\partial \mathbf{X}}\right]_{k l}=\frac{\partial \ln |\mathbf{X}|}{\partial X_{k l}}=\frac{1}{|\mathbf{X}|} \frac{\partial|\mathbf{X}|}{\partial \mathbf{X}}=\frac{1}{|\mathbf{X}|}|\mathbf{X}|\left(\mathbf{X}^{-1}\right)^{\mathrm{T}} \tag{26}
\end{equation*}
$$

giving the identity

$$
\begin{equation*}
\frac{\partial \ln |\mathbf{X}|}{\partial \mathbf{X}}=\left(\mathbf{X}^{-1}\right)^{\mathrm{T}} \tag{27}
\end{equation*}
$$

References

[1] Matrix calculus. [Online]. Available: http://en.wikipedia.org/wiki/Matrix_calculus
[2] K. B. Petersen and M. S. Pedersen, "The matrix cookbook," 2008.
[3] A. Ng, Machine Learning. Class notes for CS229, Stanford Engineering Everywhere, Stanford University, 2008. [Online]. Available: http://see.stanford.edu
[4] S. R. Searle, Matrix Algebra Useful for Statistics. New York, NY: John Wiley \& Sons, 1982.
[5] J. R. Schott, Matrix Analysis for Statistics. New York, NY: John Wiley \& Sons, 1996.
[6] T. P. Minka, "Old and new matrix algebra useful for statistics," 2000. [Online]. Available: http://research.microsoft.com/en-us/um/people/minka/papers/matrix
[7] D. G. Zill and M. R. Cullen, Advanced Engineering Mathematics, 3rd ed. Jones and Bartlett, 2006.

