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1 Introduction

This document gives a high-level summary of the necessary details for implementing collapsed
Gibbs sampling for fitting Gaussian mixture models (GMMs) following a Bayesian approach.
The document structure is as follows. After notation and reference sections (Sections 2 and 3),
the case for sampling the parameters of a finite Gaussian mixture model is described in Section 4.
This is then extended to the infinite case in Section 5.

Much of this document is based on content from [1]. I recommend reading the document
in conjunction with Sections 24.2 and 25.2 in [1] while consulting the other references given
throughout this text.

2 Notation

We aim to follow generally the same notation as that used in [1]. Below is a (limited) summary
of the notation used.

2.1 Data

N Number of data vectors.

D Dimension of data vectors.

xi ∈ RD The ith data vector.

X = {x1,x2, . . . ,xN} Set of data vectors.

X\i All data vectors apart from xi.

Xk Set of data vectors from mixture component k.

Xk\i Set of data vectors from mixture component k, without taking xi
into account.

Nk Number of data vectors from mixture component k.

Nk\i Number of data vectors from mixture component k, without
taking xi into account.
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2.2 Model parameters

K Number of components in a finite mixture model.

zi ∈ {1, 2, . . . ,K} Discrete latent state indicating which component observation xi
belongs to.

z = (z1, z2, . . . , zN ) Latent states for all observations x1,x2, . . . ,xN .

z\i All latent states excluding zi.

µ Mean vector of a multivariate Gaussian density. A subscript is
used to for a particular component in a mixture model, e.g. µk.

Σ Covariance matrix of a multivariate Gaussian density. A subscript
is used for a particular component in a mixture model, e.g. Σk.

πk = P (zi = k) Prior probability that data vector xi will be assigned to mixture
component k.

π = (π1, π2, . . . , πK) Prior assignment probability for all K components.

2.3 Hyper-parameters

α = (α1, α2, . . . , αK) Parameter for Dirichlet prior on the mixing weights π.

β = (m0, κ0, ν0,S0) Parameters for the Gaussian-inverse-Wishart prior on mean
vector µ and covariance matrix Σ of a multivariate Gaussian
distribution. The interpretation for the individual parameters are
given below.

m0 Prior mean for µ.

κ0 How strongly we believe the above prior.

S0 Proportional to prior mean for Σ.

ν0 How strongly we believe the above prior.

3 The multivariate Gaussian with fully conjugate prior

This section serves as reference for the rest of the document. The content is based on [1, Ch. 4.6],
[2] and [3]. In this section, hyper-parameters are implied and not explicitly noted on the right
of the conditioning bar of densities. The rest of the document will be more explicit.
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3.1 Likelihood

The likelihood of random vectors X = {x1,x2, . . . ,xN} being generated by a multivariate Gaus-
sian with mean µ and covariance Σ is

p(X|µ,Σ) =
N∏
n=1

N (xn|µ,Σ)

= (2π)−ND/2|Σ|−N/2 exp

(
−1

2

N∑
n=1

(xn − µ)TΣ−1(xn − µ)

)
(1)

= (2π)−ND/2|Σ|−N/2 exp

(
−N

2
(µ− x)TΣ−1(µ− x)

)
·

exp

(
−1

2
tr(Σ−1Sx)

)
(2)

where

Sx ,
N∑
n=1

(xn − x)(xn − x)T

x ,
1

N

N∑
n=1

xn

The equivalence of (1) and (2) follows from the identity [1, p. 132]:

N∑
n=1

(xn − µ)TΣ−1(xn − µ) = tr(Σ−1Sx) +N(x− µ)TΣ−1(x− µ)

3.2 Prior on parameters

For the mean µ and covariance matrix Σ of a multivariate Gaussian, the Gaussian-inverse-
Wishart (GIW) prior is fully conjugate [1, p. 133]:

GIW(µ,Σ|m0, κ0, ν0,S0) , N (µ|m0,
1

κ0
Σ) · IW(Σ|S0, ν0)

=
1

ZGIW(D,κ0, ν0,S0)
|Σ|−1/2 exp

(κ0

2
(µ−m0)TΣ−1(µ−m0)

)
·

|Σ|−
ν0+D+1

2 exp

(
−1

2
tr(Σ−1S0)

)
=

1

ZGIW(D,κ0, ν0,S0)
|Σ|−

ν0+D+2
2 ·

exp

(
−κ0

2
(µ−m0)TΣ−1(µ−m0)− 1

2
tr(Σ−1S0)

)
(3)

with

ZGIW(D,κ0, ν0,S0) = 2
(ν0+1)D

2 πD(D+1)/4κ
−D/2
0 |S0|−ν0/2

D∏
i=1

Γ

(
ν0 + 1− i

2

)
(4)

Thus the fully conjugate prior density is

p(µ,Σ) = GIW(µ,Σ|m0, κ0, ν0,S0)

An intuitive interpretation of the hyper-parameters is as follows [1, p. 133]:
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• m0 is our prior mean (expected value) for µ.

• κ0 is how strongly we believe the above prior for µ.

• S0 is proportional to our prior mean for Σ; specifically the expected value of Σ under the
prior is given by [1, p. 126]:

〈Σ〉p(µ,Σ) =
S0

ν0 −D − 1
(5)

• ν0 is how strongly we believe the above prior for Σ. Since the Gamma function is not
defined for negative integers and zero, from (4) we require ν0 > D − 1. As noted in [1,
p. 133], when we set ν0 = D + 2 then 〈Σ〉 = S0.1

3.3 Full joint

An expression for the full joint of the data X and the parameters µ and Σ can be obtained as
follows [1, p. 143]:

p(X ,µ,Σ) = p(X|µ,Σ) p(µ,Σ)

=
(2π)−ND/2

ZGIW(D,κ0, ν0,S0)
|Σ|−

ν0+N+D+2
2 ·

exp

(
−N

2
(µ− x)TΣ−1(µ− x)− κ0

2
(µ−m0)TΣ−1(µ−m0)

− 1

2
tr(Σ−1Sx)− 1

2
tr(Σ−1S0)

)
=

(2π)−ND/2

ZGIW(D,κ0, ν0,S0)
|Σ|−

ν0+N+D+2
2 ·

exp

{
−κ0 +N

2

(
µ− κ0m0 +Nx

κN

)T

Σ−1

(
µ− κ0m0 +Nx

κN

)

− 1

2
tr

[
Σ−1

(
S0 + Sx +

κ0N

κ0 +N
(x−m0)(x−m0)T

)]}
(6)

where we used the form in (2) for the likelihood.

3.4 Posterior of parameters

The posterior of the µ and Σ parameters is

p(µ,Σ|X ) ∝ p(X|µ,Σ) p(µ,Σ) (7)

The right hand side of (7) is the full joint given in (6). By comparing (3) and (6), it follows

1 The typical hyper-parameters noted in [1, p. 133] is to choose S0 = diag(Sx)/N , ν0 = D + 2, resulting in
〈Σ〉 = S0, m0 = x, and to set κ0 to a small number such as 0.01 (Frank Wood uses κ0 = 0.05). Note that this is
for a single multivariate Gaussian, not necessarily a mixture of Gaussians.
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that the posterior is a GIW density with updated parameters [1, p. 134]:

p(µ,Σ|X ) = GIW(µ,Σ|mN , κN , νN ,SN ) (8)

mN =
κ0m0 +Nx

κN
=

κ0

κ0 +N
m0 +

N

κ0 +N
x

κN = κ0 +N

νN = ν0 +N

SN = S0 + Sx +
κ0N

κ0 +N
(x−m0)(x−m0)T

= S0 + S + κ0m0m
T
0 − κNmNmT

N (9)

where we define S ,
∑N

n=1 xnx
T
n .

3.5 Marginal likelihood of data

Using the full joint in (6), the marginal likelihood of the data can be obtained as follows [2]:

p(X ) =

∫
µ

∫
Σ
p(X ,µ,Σ) dµdΣ =

∫
µ

∫
Σ
p(X|µ,Σ) p(µ,Σ) dµ dΣ (10)

=
(2π)−ND/2

ZGIW(D,κ0, ν0,S0)

∫
µ

∫
Σ
|Σ|−

ν0+N+D+2
2 ·

exp

(
−κN

2
(µ−mN )Σ−1(µ−mN )− 1

2
tr(Σ−1SN )

)
dµdΣ (11)

= (2π)−ND/2
ZGIW(D,κN , νN ,SN )

ZGIW(D,κ0, ν0,S0)
(12)

= π−ND/2
κ
D/2
0 |S0|ν0/2

κ
D/2
N |SN |νN/2

D∏
i=1

Γ
(
νN+1−i

2

)
Γ
(
ν0+1−i

2

) (13)

Equation (12) follows from (11) since the integral reduces to the normalizing constant of the
GIW density of the posterior given in (8). The final result in (13) is obtained by substituting
in the GIW normalizing constants as defined in (4).

3.6 Posterior predictive

Suppose we observe a new data vector x∗. Then the posterior predictive for this vector is

p(x∗|X ) =
p(x∗,X )

p(X )
(14)

An expression for the denominator in (14) is given in (13). The numerator can be obtained in
a similar way from (13) by considering the marginal likelihood of the new set {X ,x∗}. Thus,
using the notation SN∗ to denote the calculation of (9) on this new set, we can calculate (14) as

p(x∗|X ) =
(2π)−(N+1)D/2

(2π)−ND/2
ZGIW(D,κN + 1, νN + 1,SN∗)

((((
((((

((
ZGIW(D,κ0, ν0,S0)

(((
((((

(((
ZGIW(D,κ0, ν0,S0)

ZGIW(D,κN , νN ,SN )

= (2π)−D/2
ZGIW(D,κN + 1, νN + 1,SN∗)

ZGIW(D,κN , νN ,SN )

= π−D/2
(κN + 1)−D/2|SN∗|−(νN+1)/2

∏D
i=1 Γ

(
νN+2−i

2

)
κ
−D/2
N |SN |−νN/2

∏D
i=1 Γ

(
νN+1−i

2

) (15)
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where we used the form in (12) for the marginals and then substituted (4) in.

As an alternative form, it can be shown that this posterior predictive has a multivariate Stu-
dent’s t distribution [1, p. 135]:

p(x∗|X ) = T (x∗|mN ,
κN + 1

κN (νN −D + 1)
SN , νN −D + 1) (16)

where [1, p. 46]:

T (x|µ,Σ, ν) =
Γ
(
ν+D

2

)
Γ
(
ν
2

)
νD/2πD/2

|Σ|−1/2

[
1 +

1

ν
(x− µ)TΣ−1(x− µ)

]−(ν+D)/2

In practical implementations, both (15) and (16) are used to calculate the posterior predictive.
For example, in Yee Whye Tey’s Matlab code2, a variation of (15) is used.3 On the other hand,
in Frank Wood’s Matlab implementation,4 equation (16) is used directly.

Another predictive value of interest is the predictive of a new data vector x∗ before any data has
been observed, i.e. the posterior predictive of x∗ under the prior alone. This can be obtained as
a special case of (13) or (15), yielding

p(x∗) =

∫
µ

∫
Σ
p(x∗|µ,Σ) p(µ,Σ) dµdΣ

= π−D/2
κ
D/2
0

(κ0 + 1)D/2
|S∗|−(ν0+1)/2

|S0|−ν0/2
D∏
i=1

Γ
(
ν0+2−i

2

)
Γ
(
ν0+1−i

2

)
where

S∗ = S0 +
κ0

κ0 + 1
(x∗ −m0)(x∗ −m0)T

which is (9) calculated on x∗ alone. Alternatively, this posterior predictive under the prior can
be obtained as a special case of (16), yielding the equivalent result

p(x∗) = T (x∗|m0,
κ0 + 1

κ0(ν0 −D + 1)
S0, ν0 −D + 1)

2http://www.stats.ox.ac.uk/~teh/software.html, partially described in [2].
3 In Yee Whye Teh’s Matlab code, a mysterious function ZZ() is defined, which is actually a helper function

for computing the log of (14). The helper function is defined as

z(D,N, κ, ν,S) = −ND
2

log π − D

2
log κ− ν

2
log |S|+

D∑
i=1

log Γ

(
ν + i− 1

2

)
The log posterior predictive can then be calculated as

log p(x∗|X ) = z(D,N + 1, κN + 1, νN + 1,SN∗)− z(D,N, κN , νN ,SN )

4http://www.robots.ox.ac.uk/~fwood/Code/index.html, partially described in [4].
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4 Bayesian finite Gaussian mixture model

This section is primarily based on [1, Section 24.2.4] and [4].

4.1 The model

The Bayesian finite Gaussian mixture model is illustrated in Figure 1. See Section 2 for details
on notation. For each observed data vector xi, we have a latent variable zi ∈ {1, 2, . . . ,K}
indicating which of the K components xi belongs to. πk = P (zi = k) is the prior probability
that xi belongs to component k. Given zi = k, xi is generated by the kth Gaussian mixture
component with mean vector µk and covariance matrix Σk.

xi

zi

πk

α

K

µk

Σk

K

N

β

Figure 1: A Bayesian finite GMM. The hyper-parameter β = (m0, κ0, ν0,S0).

We use a Dirichlet distribution for the mixture weights π = (π1, π2, . . . , πK):

p(π|α) = Dir(π|α) (17)

where

Dir(x|α) ,
1

B(α)

K∏
k=1

xαk−1
k (18)

such that
∑K

k=1 xk = 1, xk ∈ [0, 1] and

B(α) =

∏K
k=1 Γ(αk)

Γ(α0)
(19)

where α0 =
∑K

k=1 αk. We use a Dirichlet distribution for p(π|α) since the Dirichlet distribution
is a conjugate prior for the multinomial distribution and P (z|π) in (21) will have the same form
as a multinomial, up to an irrelevant constant factor [1, Section 3.4].

For the mean vector µk and covariance matrix Σk of each of the K Gaussian mixture compo-
nents, we use a GIW distribution with hyper-parameters β = (m0, κ0, ν0,S0):

p(µk,Σk|β) = GIW(µk,Σk|m0, κ0, ν0,S0)

We do this since the GIW is fully conjugate to the multivariate Gaussian likelihood (see Sec-
tions 3.2 and 3.4) and the p(Xk|µk,Σk) term in (29) will be a Gaussian likelihood.
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4.2 Collapsed Gibbs sampling

Since we chose p(π|α) and p(µk,Σk|β) to be conjugate, we are able to analytically integrate
out the model parameters π, µk and Σk and only sample the component assignments z. This
is done as follows:

P (zi = k|z\i,X ,α,β) ∝ P (zi = k|z\i,α,��β) p(X|zi = k, z\i,��α,β)

= P (zi = k|z\i,α) p(xi|X\i, zi = k, z\i,β) p(X\i|����zi = k, z\i,β)

∝ P (zi = k|z\i,α) p(xi|X\i, zi = k, z\i,β) (20)

Typically the α hyper-parameter is set to αk = α/K. For this setting α0 =
∑K

k=1 αk = α. In
the following, we will give both the general solution and the solution when using this standard
setting for α.

In the following two sections we respectively find expressions for the first and second terms on
the right hand side of (20).

4.2.1 First term

We find an expression for P (zi = k|z\i,α) in (20) using

P (zi = k|z\i,α) =
P (zi = k, z\i|α)

P (z\i|α)
=

P (z|α)

P (z\i|α)

with zi = k in the numerator. We can calculate both the numerator and denominator above if
we can find an expression for the marginal P (z|α).

We do this by marginalizing out π:

P (z|α) =

∫
π
P (z|π) p(π|α) dπ

The first term in the integrand is

P (z|π) =

K∏
k=1

πNkk (21)

where Nk is the count of component k in z. The second term in the integrand is given in (17).
We can thus marginalize [1, p. 842]:

P (z|α) =

∫
π
P (z|π) p(π|α) dπ

=

∫
π

K∏
k=1

πNkk
1

B(α)

K∏
k=1

xαk−1
k dπ

=
1

B(α)

∫
π

K∏
k=1

πNk+αk−1
k dπ (22)

=
Γ(α0)

Γ(N + α0)

K∏
k=1

Γ(Nk + αk)

Γ(αk)
(23)

=
Γ(α)

Γ(N + α)

K∏
k=1

Γ(Nk + α/K)

Γ(α/K)
(24)
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Equation (23) follows from (22) since the integral reduces to the normalizing constant of the
Dirichlet distribution proportional to

∏K
k=1 π

Nk+αk−1
k . In (24) we used the standard α setting.

From (23) we can find an expression for the desired term [1, p. 843]:

P (zi = k|z\i,α) =
P (zi = k, z\i|α)

P (z\i|α)
=

P (z|α)

P (z\i|α)
(25)

=

Γ(α0)
Γ(N+α0)

Γ(Nk+αk)
Γ(αk)

∏K
j=1,j 6=k

Γ(Nj+αj)
Γ(αj)

Γ(α0)
Γ(N+α0−1)

Γ(Nk\i+αk)

Γ(αk)

∏K
j=1,j 6=k

Γ(Nj+αj)
Γ(αj)

=
Γ(N + α0 − 1)

Γ(N + α0)

Γ(Nk + αk)

Γ(Nk\i + αk)

=
Nk\i + αk

N + α0 − 1
(26)

=
Nk\i + α/K

N + α− 1
(27)

where we used Γ(x+ 1) = xΓ(x) and Nk\i = Nk − 1. Note that the latter statement is not true
in general, but comes from the fact that for the numerator in (25) we have zi = k. In (27) we
used the standard α setting.

4.2.2 Second term

To find an expression for p(xi|X\i, zi = k, z\i,β) in (20) we use [1, p. 843]:

p(xi|X\i, zi = k, z\i,β) = p(xi|Xk\i,β)

where Xk\i is the set of vectors assigned to component k without taking xi into account. Thus
the second term in (20) can be written as

p(xi|Xk\i,β) =
p(xi,Xk\i|β)

p(Xk\i|β)
=

p(Xk|β)

p(Xk\i|β)
(28)

where xi is assumed to be assigned to component k in the numerator. As in the previous section,
we can calculate both the numerator and denominator above if we can find an expression for
the marginal p(Xk|β).

We do this by marginalizing out µk and Σk:

p(Xk|β) =

∫
µk

∫
Σk

p(Xk,µk,Σk|β) dµk dΣk

=

∫
µk

∫
Σk

p(Xk|µk,Σk) p(µk,Σk|β) dµk dΣk (29)

Now note that the marginalization in (29) is exactly equivalent to the marginalization performed
in (10). In fact, (28) is equivalent to the posterior predictive in (14). The desired expression
for (28) is thus given in (15), with appropriate changes to the numerator and denominator sets.
Alternatively, (16) can be used directly.

4.2.3 Pseudo code

Pseudo code for the collapsed Gibbs sampler for a finite GMM is given in Algorithm 1.
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Algorithm 1 Collapsed Gibbs sampler for a finite Gaussian mixture model.

1: Choose an initial z.
2: for T iterations do . Gibbs sampling iterations
3: for i = 1 to N do
4: Remove xi’s statistics from component zi. . Old assignment for xi
5: for k = 1 to K do . Every possible component
6: Calculate P (zi = k|z\i,α) using (26).
7: Calculate p(xi|Xk\i,β) in (28) using (15) or (16).
8: Calculate P (zi = k|z\i,X ,α,β) ∝ P (zi = k|z\i,α) p(xi|Xk\i,β).
9: end for

10: Sample knew from P (zi|z\i,X ,α,β) after normalizing.
11: Add xi’s statistics to the component zi = knew. . New assignment for xi
12: end for
13: end for

4.3 Marginal of data and component assignment

In order to evaluate the Gibbs sampling procedure and to ensure that mixing is taking place it is
useful to have some metric to calculate over the sampling iterations. The value of the marginal
of the data and component assignments p(X , z|α) are useful in this regard since it captures both
changes in the likelihood of the data under the current assignment through p(X|z,β), as well as
the probability of the current component assignment P (z|α). The marginal can be calculated
as follows:

p(X , z|α,β) = p(X|z,β)P (z|α)

=

(
K∏
k=1

p(Xk|β)

)
P (z|α) (30)

where Xk is the set of data vectors assigned to component k. The terms in the product in (30)
can each be calculated using (13), while the second term in (30) can be calculated using (23).

5 Infinite Gaussian mixture model

This section is primarily based on [1, Section 25.2] and [4]. The infinite Gaussian mixture model
is also sometimes referred to as a Dirichlet process Gaussian mixture model (DP GMM).

5.1 The Chinese restaurant process

Before describing the model, we first give an overview of the Chinese restaurant process (CRP).

The CRP is a simple stochastic process that is exchangeable.In the analogy from which this
process takes its name, customers seat themselves at a restaurant with an infinite number of
tables. The first customer enters and sits at the first table. The second customer enters and
sits at the first table with probability 1

1+α and at a new table with probability α
1+α . The ith

customer sits at an occupied table with probability proportional to the number of customers
already seated at that table, or sits at a new table with a probability proportional to α. Formally,
if zi is the table chosen by the ith customer, then

P (zi = k|z\i, α) =

{
Nk

N+α−1 if k is occupied, i.e. Nk > 0
α

N+α−1 if k is a new table, i.e. k = k∗ = K + 1
(31)
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where z\i = (z1, z2, . . . , zi−1) and Nk is the number of customers already seated at table k.

The probability of a particular sequence of table assignments can be obtained from (31) as
follows (see [5] and [6] for details):

P (z) =
N∏
i=1

P (zi|z\i)

= αK
Γ(α)

Γ(N + α)

K∏
k=1

(Nk − 1)!

=
αK
∏K
k=1(Nk − 1)!∏N

i=1(i− 1 + α)
(32)

Note that since (32) only depends on the number of tables K and the number of customers
seated at each table Nk, the probability of a particular seating arrangement does not depend on
the order in which the customers arrived. The random variables zi in z is therefore exchangeable.

5.2 The Model

The Bayesian infinite Gaussian mixture model is illustrated in Figure 2. The model is very
similar to the finite GMM described in Section 4.1. However, for the infinite model the possible
number of mixture components could be infinite where for the finite model the number of mixture
components K were known beforehand.

xi

zi

πk

α

∞

µk

Σk

N

β

∞

Figure 2: A Bayesian infinite GMM. The hyper-parameter β = (m0, κ0, ν0,S0).

We used a Dirichlet distribution as the prior on π for the finite model. Here we use a Dirichlet
process (DP) prior with concentration parameter α and a GIW base distribution with hyper-
parameters β for the model parameters. It can be shown that the by choosing the prior in this
way, the model is equivalent to a CRP mixture model [5]. For formal discussions of the DP
mixture model and how it relates to the CRP, see [1, Section 25.2.2], [5], [6, Section 3.6], [7]
and [8].

In the following we thus use the CRP formulation of the DP. We show that the resulting equations
also follows from the finite case as the number of components K → ∞. We do this for the
collapsed case (after integrating out π, µk and Σk) as is also done (more completely) in [1,
Section 25.2.4] and [4]. Consult the relevant references for more complete derivations of the
equations given in this section.
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5.3 Collapsed Gibbs sampling

As in Section 4.2, we are able to analytically integrate out the parameters π, µk and Σk and
sample the component assignment z directly:

P (zi = k|z\i,X , α,β) ∝ P (zi = k|z\i, α) p(xi|X\i, zi = k, z\i,β) (33)

In the following two sections we respectively give expressions for the two terms on the right
hand side of (33).

5.3.1 First term

The probability P (zi = k|z\i, α) in (33) is governed by the CRP. From (31) we can thus write

P (zi = k|z\i, α) =

{
Nk\i

N+α−1 if k is an existing component, i.e. Nk\i > 0
α

N+α−1 if k is a new component, i.e. k = k∗ = K + 1
(34)

where we have assumed by exchangeability that zi is the last “customer” to arrive at the “restau-
rant”.

The first condition in (34) also follows directly from (27) as K → ∞. The second condition
also follows from (27) (although maybe not as clearly); although the probability of a single new

component is only α/K
N+α−1 (which appears to go to zero), if we lump the probability of all the

possible empty components together, we have α
N+α−1 as K → ∞.5 It thus follows that (34)

and (27) are equivalent as K →∞ [9].

From (32) the component assignments of all the data vectors are given by

P (z|α) = αK
Γ(α)

Γ(N + α)

K∏
k=1

(Nk − 1)! =
αK
∏K
k=1(Nk − 1)!∏N

i=1(i− 1 + α)
(35)

Similar to the discussion above about (34), it can be shown that (35) results in the limit from
(24) as K →∞ [10].

5.3.2 Second term

Exactly as in Section 4.2.2, we can find an expression for p(xi|X\i, zi = k, z\i,β) in (33) by
writing it as

p(xi|X\i, zi = k, z\i,β) = p(xi|Xk\i,β) =
p(Xk|β)

p(Xk\i|β)
(36)

The above can be calculated using (15) or (16) if zi = k is an existing component. If zi = k∗ is
a new component then we have [1, p. 886]:

p(xi|X\i, zi = k∗, z\i,β) = p(xi|β) =

∫
µ

∫
Σ
p(xi|µ,Σ) p(µ,Σ|β) dµ dΣ (37)

which is just the prior predictive distribution and can be calculated using (15) or (16) with
X = ∅.
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Algorithm 2 Collapsed Gibbs sampler for an infinite Gaussian mixture model.

1: Choose an initial z.
2: for T iterations do . Gibbs sampling iterations
3: for i = 1 to N do
4: Remove xi’s statistics from component zi. . Old assignment for xi
5: for k = 1 to K do . Every possible existing component

6: Calculate P (zi = k|z\i, α) =
Nk\i

N+α−1 as in (35).
7: Calculate p(xi|Xk\i,β) in (36) using (15) or (16).
8: Calculate P (zi = k|z\i,X , α,β) ∝ P (zi = k|z\i, α) p(xi|Xk\i,β).
9: end for

10: Calculate P (zi = k∗|z\i, α) = α
N+α−1 as in (35). . Consider a new component

11: Calculate p(xi|β) in (37) using (15) or (16).
12: Calculate P (zi = k∗|z\i,X , α,β) ∝ P (zi = k∗|z\i, α) p(xi|β).
13: Sample knew from P (zi|z\i,X ,α,β) after normalizing.
14: Add xi’s statistics to the component zi = knew. . New assignment for xi
15: If any component is empty, remove it and decrease K.
16: end for
17: end for

5.4 Pseudo code

Pseudo code for the collapsed Gibbs sampler for an infinite GMM is given in Algorithm 2.

5.5 Marginal of data and component assignment

Again the marginal of the data and component assignments p(X , z|α,β) can be used as evalua-
tion of the Gibbs sampling process:

p(X , z|α,β) = p(X|z,β)P (z|α)

=

(
K∏
k=1

p(Xk|β)

)
P (z|α) (38)

The terms in the product can each be calculated using (13), while the second term can be
calculated as in (35).

6 Notes on initialization

For both the finite and infinite GMMs, an initial clustering z is required for Gibbs sampling.
Several options exist:

• Start with all data vectors assigned to one component. This is the same as the option
below with K = 1.

• Randomly assign all data vectors to K components. Yee Whye Teh does this in his Matlab
implementation.

• Start with every data vector in a component of its own.

5Yee Whye Teh gives a nice overview of this in his tutorial talk available online at http://videolectures.

net/mlss09uk_teh_nbm/ at around 41:27.
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• For the infinite case, the data vectors can be assigned one component at a time, with
clustering assignment then determined by the CRP. Frank Wood does this in his Matlab
implementation.

• Use some initial clustering, e.g. that obtained from a run of K-means. One issue in this
case might be the choice of the number of components for this preclustering run.
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